Adaptive stabilization of uncertain nonholonomic Systems by output feedback

被引:0
作者
Zheng X. [1 ]
Wu Y. [1 ]
机构
[1] Institute of Automation, Qufu Normal University
来源
Journal of Control Theory and Applications | 2009年 / 7卷 / 04期
基金
中国国家自然科学基金;
关键词
Adaptive stabilization; Backstepping; Nonholonomic systems; Switching control strategy;
D O I
10.1007/s11768-009-7178-3
中图分类号
学科分类号
摘要
The adaptive output feedback control strategy is presented for a class of nonholonomic systems in chained form with nonlinearity uncertainties. A new observer and a filter are introduced for the states and parameter estimation. The proposed control strategies guarantee the convergence of the closed-loop system. The simulation example demonstrates the efficiency of the proposed method. © South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer Berlin Heidelberg 2009.
引用
收藏
页码:459 / 463
页数:4
相关论文
共 14 条
  • [1] Neimark I., Fufaev N.A., Dynamics of Nonholonomic Systems[M], (1972)
  • [2] Arnold V.I., Dynamical Systems VIII[M], (1994)
  • [3] Astol A., Discontinuous control of nonholonomic systems[J], Systems & Control Letters, 27, 1, pp. 37-45, (1996)
  • [4] Kolmanovsky I., McClamroch N.H., Developments in nonholonomic control problems[J], IEEE Control System Magazine, 15, 6, pp. 20-36, (1995)
  • [5] Walsh C.G., Bushnell L.G., Stabilization of multiple input chained form control systems[J], System & Control Letters, 25, 3, pp. 227-234, (1995)
  • [6] Jiang Z., Nijmeijer H., A recursive technique for tracking control of nonholonomic systems in chained form[J], IEEE Transactions on Automatic Control, 44, 2, pp. 265-279, (1999)
  • [7] Do K.D., Pan J., Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts[J], Systems & Control Letters, 46, 2, pp. 195-205, (2002)
  • [8] Ge S.S., Sun Z., Lee T.H., Et al., Feedback linearization and stabilization of second-order nonholonomic chained systems[J], International Journal of Control, 74, 14, pp. 1383-1392, (2001)
  • [9] Samson C., Time-varying feedback stabilization of a nonholonomic wheeled mobile robot[J], International Journal of Robotics Research, 12, 8, pp. 55-66, (1993)
  • [10] Sordalen O.J., Canudas de Wit C., Exponential stabilization of nonholonomic chained systems[J], IEEE Transactions on Automatic Control, 40, 1, pp. 35-49, (1995)