On the classification of simple Lie algebras of dimension seven over fields of characteristic 2

被引:0
|
作者
Alexander Grishkov
Marinês Guerreiro
Wilian Francisco de Araujo
机构
[1] Universidade de São Paulo Rua do Matão 1010,Instituto de Matemática e Estatística
[2] Omsk State University,Departamento de Matemática, Centro de Ciências Exatas e Tecnológicas
[3] Universidade Federal de Viçosa,undefined
[4] Universidade Tecnológica Federal do Paraná,undefined
[5] R. Cristo Rei,undefined
来源
São Paulo Journal of Mathematical Sciences | 2020年 / 14卷
关键词
Simple Lie algebra; Toral subalgebra; Absolute toral rank;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is the second part of paper (Grishkov and Guerreiro in São Paulo J Math Sci v4(1):93–107, 2010) about simple 7-dimensional Lie algebras over an algebraically closed field k of characteristic two. In this paper we prove that all simple 7-dimensional Lie algebras over k of absolute toral rank three are isomorphic to the Cartan algebra W1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_1$$\end{document} or the Hamilton algebra H2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2.$$\end{document} We hope to prove that those algebras are the unique simple 7-dimensional Lie algebras over the field k. Observe that in the case of absolute toral rank 2 this fact was proved in [2].
引用
收藏
页码:703 / 713
页数:10
相关论文
共 7 条
  • [1] On the classification of simple Lie algebras of dimension seven over fields of characteristic 2
    Grishkov, Alexander
    Guerreiro, Marines
    de Araujo, Wilian Francisco
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (02): : 703 - 713
  • [2] On simple Lie algebras over a field of characteristic 2
    Grishkov, Alexander
    JOURNAL OF ALGEBRA, 2012, 363 : 14 - 18
  • [3] On Gradings Modulo 2 of Simple Lie Algebras in Characteristic 2
    Krutov, Andrey
    Lebedev, Alexei
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [4] On simple 15-dimensional Lie algebras in characteristic 2
    Grishkov, Alexander
    Guzzo, Henrique
    Rasskazova, Marina
    Zusmanovich, Pasha
    JOURNAL OF ALGEBRA, 2022, 593 : 295 - 318
  • [5] Simple, locally finite dimensional Lie algebras in positive characteristic
    Hennig, Johanna
    JOURNAL OF ALGEBRA, 2014, 413 : 270 - 288
  • [6] Classification of group gradings on simple Lie algebras of types A, B, C and D
    Bahturin, Yuri
    Kochetov, Mikhail
    JOURNAL OF ALGEBRA, 2010, 324 (11) : 2971 - 2989
  • [7] Nondegenerate invariant symmetric bilinear forms on simple Lie superalgebras in characteristic 2
    Krutov, Andrey
    Lebedev, Alexei
    Leites, Dimitry
    Shchepochkina, Irina
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 : 1 - 21