This paper is the second part of paper (Grishkov and Guerreiro in São Paulo J Math Sci v4(1):93–107, 2010) about simple 7-dimensional Lie algebras over an algebraically closed field k of characteristic two. In this paper we prove that all simple 7-dimensional Lie algebras over k of absolute toral rank three are isomorphic to the Cartan algebra W1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W_1$$\end{document} or the Hamilton algebra H2.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_2.$$\end{document} We hope to prove that those algebras are the unique simple 7-dimensional Lie algebras over the field k. Observe that in the case of absolute toral rank 2 this fact was proved in [2].
机构:
Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
Omsk State Univ, Pr Mira 55-A, Omsk 644077, RussiaUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
Grishkov, Alexander
Guerreiro, Marines
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Vicosa, Dept Matemat, Ctr Ciencias Exatas & Tecnol, Vicosa, MG, BrazilUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
Guerreiro, Marines
de Araujo, Wilian Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tecnol Fed Parana, Toledo, PR, BrazilUniv Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
de Araujo, Wilian Francisco
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES,
2020,
14
(02):
: 703
-
713