Multiple homoclinic solutions for a class of nonhomogeneous Hamiltonian systems

被引:0
作者
Chunhua Deng
Dong-Lun Wu
机构
[1] Huaiyin Institute of Technology,Faculty of Mathematics and Physics
[2] Southwest Petroleum University,College of Science
[3] Southwest Petroleum University,Institute of Nonlinear Dynamics
来源
Boundary Value Problems | / 2018卷
关键词
Multiple Homoclinic solutions; Perturbed second order Hamiltonian systems; Superquadratic conditions; The (; ) condition; Variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
By introducing a new superquadratic condition, we obtain the existence of two nontrivial homoclinic solutions for a class of perturbed second order Hamiltonian systems which are obtained by the mountain pass theorem and Ekeland’s variational principle.
引用
收藏
相关论文
共 75 条
  • [1] Ambrosetti A.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
  • [2] Rabinowitz P.H.(1993)Multiple homoclinic orbits for a class of conservative systems Rend. Semin. Mat. Univ. Padova 89 177-194
  • [3] Ambrosetti A.(2014)Homoclinic orbits of first-order superquadratic Hamiltonian systems Discrete Contin. Dyn. Syst. 34 3353-3369
  • [4] Coti Zelati V.(1997)Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems J. Differ. Equ. 136 76-114
  • [5] Batkam C.J.(2014)Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems Adv. Differ. Equ. 2014 1095-1113
  • [6] Caldiroli P.(1995)Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems Nonlinear Anal. 25 585-601
  • [7] Jeanjean L.(1995)Homoclinic orbits for first order Hamiltonian systems J. Math. Anal. Appl. 189 1395-1413
  • [8] Chen H.W.(2009)Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems Nonlinear Anal. (5) 71 3407-3418
  • [9] He Z.M.(2011)Homoclinic orbits for superquadratic Hamiltonian systems without a periodicity assumption Nonlinear Anal. 74 285-301
  • [10] Ding Y.H.(1998)Homoclinic and periodic orbits for Hamiltonian systems Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 26 375-389