On Barycentric Interpolation. II (Grünwald–Marcinkiewicz type Theorems)

被引:0
作者
Á. P. Horváth
P. Vértesi
机构
[1] Budapest University of Technology and Economics,Department of Analysis
[2] Hungarian Academy of Sciences,Alfréd Rényi Institute of Mathematics
来源
Acta Mathematica Hungarica | 2016年 / 148卷
关键词
barycentric interpolation; divergence theorems; 41A20; 41A05;
D O I
暂无
中图分类号
学科分类号
摘要
Grünwald–Marcinkiewicz type theorems with respect to barycentric Lagrange interpolation based on equidistant and Chebyshev node-sytems in [–1, 1] are proved. It turns out that the results are very similar to the ones known for the classical Lagrange interpolation.
引用
收藏
页码:147 / 156
页数:9
相关论文
共 19 条
  • [1] Berrut J.-P.(2014)Recent advances in linear barycentric rational interpolation J. of Comput. and Appl. Math. 259 95-107
  • [2] Klein G.(2011)On the Lebesgue constant of Berruts rational interpolant at equidistant nodes J. of Comput. and Applied Math. 236 504-510
  • [3] Bos L.(2012)On the Lebesgue constant of barycentric rational interpolation at equidistant nodes Numer. Math. 121 461-471
  • [4] De Marchi S.(1914)Über die interpolatorische Darstellung stetiger Funktionen Jahresbericht der Deutschen Math. Vereinigung 23 192-210
  • [5] Hormann K.(2007)Barycentric rational interpolation with no poles and high rates of approximation Numer. Math. 107 315-331
  • [6] Bos L.(1936)Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome stetiger Funktionen Annals of Math. 37 908-918
  • [7] De Marchi S.(2012)A Contribution to the Grünwald–Marcinkiewicz Theorem Jaen J. on Approximation 4 1-13
  • [8] Hormann K.(1937)Sur la divergence des polynomes d’interpolation Acta Sci. Math. (Szeged) 8 131-135
  • [9] Klein G.(2001)An extension of the Grünwald–Marcinkiewicz theorem to the higher order Hermite–Fejér interpolation J. Austral Math. Bulletin 63 299-320
  • [10] Faber G.(2015)On barycentric interpolation. I (On the Acta Math. Hungar. 147 396-407