Fractional Poisson–Nernst–Planck Model for Ion Channels I: Basic Formulations and Algorithms

被引:0
|
作者
Duan Chen
机构
[1] University of North Carolina at Charlotte,Department of Mathematics and Statistics
来源
关键词
Ion channels; Charge transport; Poisson–Nernst–Planck equation; Fractional derivatives; Continuous-time random walk; Mathematical modeling;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose a fractional Poisson–Nernst–Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker–Planck equation. Then, it is generalized to the macroscopic fractional Poisson–Nernst–Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.
引用
收藏
页码:2696 / 2726
页数:30
相关论文
共 50 条
  • [1] Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms
    Chen, Duan
    BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (11) : 2696 - 2726
  • [2] Test of Poisson-Nernst-Planck theory in ion channels
    Corry, B
    Kuyucak, S
    Chung, SH
    JOURNAL OF GENERAL PHYSIOLOGY, 1999, 114 (04): : 597 - 599
  • [3] A New Poisson–Nernst–Planck Model with Ion–Water Interactions for Charge Transport in Ion Channels
    Duan Chen
    Bulletin of Mathematical Biology, 2016, 78 : 1703 - 1726
  • [4] Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels
    Liu, Jinn-Liang
    Eisenberg, Bob
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [5] Poisson-Nernst-Planck systems for ion channels with permanent charges
    Eisenberg, Bob
    Liu, Weishi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1932 - 1966
  • [6] Ion flux through membrane channels - An enhanced algorithm for the Poisson-Nernst-Planck model
    Dyrka, Witold
    Augousti, Andy T.
    Kotulska, Malgorzata
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (12) : 1876 - 1888
  • [7] A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels
    Chen, Duan
    BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (08) : 1703 - 1726
  • [8] Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels
    Liu, Jinn-Liang
    Eisenberg, Bob
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (22):
  • [9] Fractional Calculus in Electrical Impedance Spectroscopy: Poisson - Nernst - Planck model and Extensions
    Lenzi, E. K.
    Ribeiro, H. V.
    Zola, R. S.
    Evangelista, L. R.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (12): : 11677 - 11691
  • [10] Analysis of a Poisson-Nernst-Planck-Fermi system for charge transport in ion channels
    Jungel, Ansgar
    Massimini, Annamaria
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 395 : 38 - 68