Positive solutions for one-dimensional third-order p-Laplacian boundary value problems

被引:0
作者
Yan Sun
机构
[1] Shanghai Normal University,Department of Mathematics
来源
Advances in Difference Equations | / 2017卷
关键词
cone; existence; positive solution; maximum principle; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give improved results on the existence of positive solutions for the following one-dimensional p-Laplacian equation with nonlinear boundary conditions: {(ϕp(y″))′+b(t)g(t,y(t))=0,0<t<1,λ1ϕp(y(0))−β1ϕp(y′(0))=0,λ2ϕp(y(1))+β2ϕp(y′(1))=0,y″(0)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (\phi_{p} ( y'' )) ' + b ( t ) g ( t, y ( t ) ) = 0, \quad 0 < t < 1, \\ \lambda_{1}\phi_{p} ( y ( 0 ) ) - \beta_{1} \phi_{p} ( y' ( 0 ) ) = 0, \\ \lambda_{2}\phi_{p} ( y ( 1 ) ) + \beta_{2} \phi_{p} ( y' ( 1 ) ) = 0,\qquad y'' ( 0 ) = 0, \end{cases} $$\end{document} where ϕp(s)=|s|p−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi_{p} ( s ) = | s | ^{ p-2 } s$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p >1 $\end{document}. Constructing an available integral operator and combining fixed point index theory, we establish some optimal criteria for the existence of bounded positive solutions. The interesting point of the results is that the term b(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b ( t ) $\end{document} may be singular at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document} and/or t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=1$\end{document}. Moreover, the nonlinear term g(t,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(t, y)$\end{document} is also allowed to have singularity at y=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y=0$\end{document}. In particular, our results extend and unify some known results.
引用
收藏
相关论文
共 48 条
  • [1] Chen S(2006)The existence of multiple positive solutions for a class of third-order Acta Math. Sci. Ser. A 26 794-800
  • [2] He X(2004)-Laplacian operator singular boundary value problems Appl. Math. Lett. 17 867-873
  • [3] He X(2004)Double positive solutions of a three-point boundary value problem for the one-dimensional Nonlinear Anal. 56 975-984
  • [4] Ge W(1997)-Laplacian J. Math. Anal. Appl. 205 586-597
  • [5] Gupta C(2000)Twin positive solutions for the one dimensional Nonlinear Anal. 42 1327-1333
  • [6] Trofimchuk S(2004)-Laplacian boundary value problems Appl. Math. Lett. 17 655-661
  • [7] Kong L(2009)A sharper condition for the solvability of a three-point second order boundary value problem Comput. Math. Appl. 58 1425-1432
  • [8] Wang J(2006)Multiple positive solutions for the one-dimensional Appl. Math. Comput. 181 826-836
  • [9] Liu B(2010)-Laplacian Comput. Math. Appl. 59 2059-2066
  • [10] Kong D(2006)Positive solutions of three-point boundary value problems for the one-dimensional Nonlinear Anal. 65 2013-2023