Plateau’s problem in Finsler 3-space

被引:0
作者
Patrick Overath
Heiko von der Mosel
机构
[1] RWTH Aachen University,Institut für Mathematik
来源
Manuscripta Mathematica | 2014年 / 143卷
关键词
44A12; 49Q05; 49Q10; 53A35; 53B40; 53C60;
D O I
暂无
中图分类号
学科分类号
摘要
We explore a connection between the Finslerian area functional based on the Busemann–Hausdorff-volume form, and well-investigated Cartan functionals to solve Plateau’s problem in Finsler 3-space, and prove higher regularity of solutions. Free and semi-free geometric boundary value problems, as well as the Douglas problem in Finsler space can be dealt with in the same way. We also provide a simple isoperimetric inequality for minimal surfaces in Finsler spaces.
引用
收藏
页码:273 / 316
页数:43
相关论文
共 45 条
[1]  
Álvarez Paiva J.C.(2006)What is wrong with the Hausdorff measure in Finsler spaces Adv. Math. 204 647-663
[2]  
Berck G.(2003)Complex analysis and the Funk transform J. Korean Math. Soc. 40 577-593
[3]  
Bailey T.N.(1947)Intrinsic area Ann. Math. (2) 48 234-267
[4]  
Eastwood M.G.(1949)A theorem on convex bodies of the Brunn–Minkowski type Proc. Natl. Acad. Sci. U.S.A. 35 27-31
[5]  
Gover A.R.(1952)An existence theorem of calculus of variations for integrals on parametric surfaces Am. J. Math. 74 265-295
[6]  
Mason L.J.(2002)Isoperimetric inequalities for parametric variational problems Ann. Inst. H. Poincaré Anal. Non Linéaire 19 617-629
[7]  
Busemann H.(2009)Bernstein type theorems for minimal surfaces in ( Publ. Math. Debrecen 74 383-400
[8]  
Busemann Herbert(1952))-space Rivista Mat. Univ. Parma 3 43-63
[9]  
Cesari L.(1915)On the existence of minimizing surfaces in parametric double integral problems of the calculus of variations Math. Ann. 77 129-135
[10]  
Clarenz U.(1991)Über eine geometrische Anwendung der Abelschen Integralgleichung Mathematika 38 117-133