Effect of the preparation methods on electrical properties of epoxy resin/carbon nanofiber composites

被引:19
作者
Bannov A.G. [1 ]
Uvarov N.F. [1 ,2 ]
Shilovskaya S.M. [1 ]
Kuvshinov G.G. [1 ,3 ]
机构
[1] Novosibirsk State Technical University
[2] Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences
[3] Sochi State University
来源
Nanotechnologies in Russia | 2012年 / 7卷 / 3-4期
关键词
Percolation (computer storage) - Percolation (fluids) - Nanofibers - Fillers - Solvents;
D O I
10.1134/S1995078012020048
中图分类号
学科分类号
摘要
The effect of preparation methods on the electrical properties of epoxy resin/carbon nanofiber (ER/CNF) composites has been investigated. The conductivity, permittivity, and loss tangent of composite materials has been measured in the frequency range of 0. 09 Hz-1 MHz in the region below and above the percolation threshold. Three main preparation methods have been used: mechanical mixing, ultrasonication in ER and a solvent. The electrical properties of composites that were prepared using ultrasonication in a solvent have been determined in a wide range of filler concentrations 0 < p < 45 wt %. It was shown that the effect of the preparation methods on the composite properties varies depending on whether the filler concentration is above or below the percolation threshold. © 2012 Pleiades Publishing, Ltd.
引用
收藏
页码:169 / 177
页数:8
相关论文
共 28 条
[11]  
Badaire S., Poulin P., Maugey M., Zakri C., In Situ Measurements of Nanotube Dimensions in Suspensions by Depolarized Dynamic Light Scattering, Langmuir, 20, pp. 10367-10370, (2004)
[12]  
Bryning M.B., Milkie D.E., Islam M.F., Kikkawa J.M., Yodh A.G., Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites, Appl. Phys. Lett., 87, (2005)
[13]  
Sundararajan P.R., Singh S., Moniruzzaman M., Surfactant-Induced Crystallization of Polycarbonate, Macromolecules, 37, pp. 10208-10211, (2004)
[14]  
Celzard A., McRae E., Deleuze C., Dufort M., Furdin G., Mareche J.F., Critical Concentration in Percolating Systems Containing a High-Aspect-Ratio Filler, Phys. Rev. B, 53, pp. 6209-6214, (1996)
[15]  
Kuvshinov G.G., Mogilnykh Y.I., Kuvshinov D.G., Zaikovskii V.I., Avdeeva L.B., Peculiarities of Filamentous Carbon Formation in Methane Decomposition on Ni-Containing Catalysts, Carbon, 36, pp. 87-97, (1998)
[16]  
Kuvshinov G.G., Mogilnykh Y.I., Kuvshinov D.G., Yermakov D.Y., Yermakova M.A., Salanov A.N., Rudina N.A., Mechanism of Porous Filamentous Carbon Granule Formation on Catalytic Hydrocarbon Decomposition, Carbon, 37, (1999)
[17]  
Zavarukhin S.G., Kuvshinov G.G., Kuvshinov D.G., Mogil'nykh Y.I., Realization of a Progress of Producing Granulated Catalytic Fibrous Carbon on the Pilot Reactor Scale, Khim. Promyshl., 5, pp. 300-307, (1998)
[18]  
Connor M.T., Roy S., Ezquerra T.A., Balta' F.J., Calleja, Broadband AC Conductivity of Conductor-Polymer Composites, Phys. Rev. B, 57, pp. 2286-2293, (1998)
[19]  
Gefen Y., Aharony A., Alexander S., Anomalous Diffusion on Percolating Clusters, Phys. Rev. Lett., 50, pp. 77-80, (1983)
[20]  
Laibowitz R.B., Gefen Y., Dynamic Scaling Near the Percolation Threshold in Thin Au Films, Phys. Rev. Lett., 53, pp. 380-384, (1984)