Implicit Runge–Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation

被引:0
作者
Jingjun Zhao
Yanming Zhang
Yang Xu
机构
[1] Qufu Normal University,School of Mathematical Science
[2] Harbin Institute of Technology,Department of Mathematics
来源
Computational and Applied Mathematics | 2020年 / 39卷
关键词
Implicit Runge–Kutta method; Spectral Galerkin method; Riesz space fractional/distributed-order diffusion equation; Convergence; Stability; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical method with high accuracy both in time and in space is constructed for the Riesz space fractional diffusion equation, in which the temporal component is discretized by an s-stage implicit Runge–Kutta method and the spatial component is approximated by a spectral Galerkin method. For an algebraically stable Runge–Kutta method of order p(p≥s+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p\ge s+1)$$\end{document}, the unconditional stability of the full discretization is proven and the convergence order of s+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s+1$$\end{document} in time is obtained. The optimal error estimate in space, with convergence order only depending on the regularity of initial value and f, is also derived. Meanwhile, this kind of method is applied to the Riesz space distributed-order diffusion equation, and similar stability and convergence results are obtained. Finally, numerical experiments are provided to illustrate the theoretical results.
引用
收藏
相关论文
共 97 条
[1]  
Abbaszadeh M(2019)Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation Appl Math Lett 88 179-185
[2]  
Benson DA(2000)The fractional-order governing equation of Lévy motion Water Resour Res 36 1413-1423
[3]  
Wheatcraft SW(2019)Second-order predictor-corrector schemes for nonlinear distributed-order space-fractional differential equations with non-smooth initial data Int J Comput Math 96 1861-1878
[4]  
Meerschaert MM(2014)Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations J Comput Phys 276 26-38
[5]  
Biala TA(2014)Fourth order accurate scheme for the space fractional diffusion equations SIAM J Numer Anal 52 1418-1438
[6]  
Bu W(2010)Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel Math Comput 79 147-167
[7]  
Tang Y(2016)Generalized Jacobi functions and their applications to fractional differential equations Math Comput 85 1603-1638
[8]  
Yang J(2019)A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations Appl Math Comput 346 452-464
[9]  
Chen M(2009)Numerical analysis for distributed-order differential equations J Comput Appl Math 225 96-104
[10]  
Deng W(2015)High-order algorithms for Riesz derivative and their applications (II) J Comput Phys 293 218-237