Interpretation of Zc(4025)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_c(4025)$$\end{document} as the hidden charm tetraquark states via QCD Sum Rules

被引:0
|
作者
Cong-Feng Qiao
Liang Tang
机构
[1] Graduate University of Chinese Academy of Sciences,School of Physics
[2] CAS Center for Excellence in Particle Physics,undefined
来源
The European Physical Journal C | 2014年 / 74卷 / 3期
关键词
Tetraquark State; Charm Quark Mass; Continuum Threshold; Borel Parameter; Hide Charm;
D O I
10.1140/epjc/s10052-014-2810-x
中图分类号
学科分类号
摘要
By using QCD Sum Rules, we found that the charged hidden charm tetraquark [cu][c¯d¯]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[c u][\bar{c} \bar{d}]$$\end{document} states with JP=1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ J^P = 1^-$$\end{document} and 2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2^+$$\end{document}, which are possible quantum numbers of the newly observed charmonium-like resonance Zc(4025)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_c(4025)$$\end{document}, have masses of m1-c=(4.54±0.20)GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1^-}^c = (4.54 \pm 0.20) \, \text {GeV}$$\end{document} and m2+c=(4.04±0.19)GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{2^+}^c = (4.04 \pm 0.19) \, \text {GeV}$$\end{document}. The contributions up to dimension eight in the operator product expansion were taken into account in the calculation. The tetraquark mass of JP=2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{P} \,{=}\, 2^{+}$$\end{document} state was consistent with the experimental data of Zc(4025)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_c(4025)$$\end{document}, suggesting the Zc(4025)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_c(4025)$$\end{document} state to possess the quantum number of JP=2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^P \,{=}\, 2^+$$\end{document}. Extending to the b-quark sector, the corresponding tetraquark masses m1-b=(10.97±0.25)GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1^-}^b = (10.97 \pm 0.25) \, \text {GeV}$$\end{document} and m2+b=(10.35±0.25)GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{2^+}^b = (10.35 \pm 0.25) \, \text {GeV}$$\end{document} were obtained, which values are testable in future B-factories.
引用
收藏
相关论文
共 50 条