A Generalization of the Schwarz Lemma for Transversally Harmonic Maps

被引:0
作者
Xin Huang
Weike Yu
机构
[1] Fudan University,School of Mathematical Sciences
[2] Nanjing University of Science and Technology,School of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2024年 / 34卷
关键词
Riemannian foliation; Schwarz lemma; Transversally harmonic map; Transversally holomorphic map; 53C12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider transversally harmonic maps between Riemannian manifolds with Riemannian foliations. In terms of the Bochner techniques and sub-Laplacian comparison theorem, we are able to establish a generalization of the Schwarz lemma for transversally harmonic maps of bounded generalized transversal dilatation. In addition, we also obtain a Schwarz type lemma for transversally holomorphic maps between Kähler foliations.
引用
收藏
相关论文
共 48 条
[1]  
Ahlfors LV(1938)An extension of Schwarz’s lemma Trans. Am. Math. Soc. 43 359-364
[2]  
Barletta E(1998)On transversally holomorphic maps of Kählerian foliations Acta Appl. Math. 54 121-134
[3]  
Dragomir S(2023)The Schwarz lemma in Kähler and non-Kähler geometry Asian J. Math. 27 121-134
[4]  
Broder K(1979)Schwarz lemma for complete Kähler manifolds Sci. Sin. 22 1238-1247
[5]  
Chen Z(2021)Schwarz-type lemmas for generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds Bull. Lond. Math. Soc. 53 26-41
[6]  
Cheng S-Y(1968)On holomorphic mappings of Hermitian manifolds of the same dimension Proc. Sympos. Pure Math. 11 157-170
[7]  
Lu Q(2022)A Schwarz lemma and a Liouville theorem for generalized holomorphic maps Nonlinear Anal. 214 92-512
[8]  
Chong T(2022)Schwarz lemma: the case of equality and an extension J. Geom. Anal. 32 1250003-3195
[9]  
Dong Y(2012)Bochner-type formulas for transversally harmonic maps Int. J. Math. 23 504-3655
[10]  
Ren Y(2017)A schwarz lemma for Bull. Aust. Math. Soc. 96 3161-148