Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes

被引:0
|
作者
Mathiasen S. [1 ,2 ,3 ]
Christensen S.M. [1 ,2 ,3 ]
Fung J.J. [4 ,8 ]
Rasmussen S.G.F. [4 ,5 ]
Fay J.F. [6 ]
Jorgensen S.K. [1 ,2 ,3 ]
Veshaguri S. [1 ,2 ,3 ]
Farrens D.L. [6 ]
Kiskowski M. [7 ]
Kobilka B. [4 ]
Stamou D. [1 ,2 ,3 ]
机构
[1] Department of Chemistry, University of Copenhagen, Copenhagen
[2] Nano-Science Center, University of Copenhagen, Copenhagen
[3] Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen
[4] Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Palo Alto, CA
[5] Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen
[6] Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR
[7] Department of Mathematics and Statistics, University of South Alabama, Mobile, AL
[8] ProNovus Bioscience, Mountain View, CA
关键词
D O I
10.1038/nmeth.3062
中图分类号
学科分类号
摘要
Proteoliposome reconstitution is a standard method to stabilize purified transmembrane proteins in membranes for structural and functional assays. Here we quantified intrareconstitution heterogeneities in single proteoliposomes using fluorescence microscopy. Our results suggest that compositional heterogeneities can severely skew ensemble-average proteoliposome measurements but also enable ultraminiaturized high-content screens. We took advantage of this screening capability to map the oligomerization energy of the b2-adrenergic receptor using ~109-fold less protein than conventional assays.
引用
收藏
页码:931 / 934
页数:3
相关论文
共 50 条
  • [1] Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes
    Mathiasen, Signe
    Christensen, Sune M.
    Fung, Juan Jose
    Rasmussen, Soren G. F.
    Fay, Jonathan F.
    Jorgensen, Sune K.
    Veshaguri, Salome
    Farrens, David L.
    Kiskowski, Maria
    Kobilka, Brian
    Stamou, Dimitrios
    NATURE METHODS, 2014, 11 (09) : 931 - 934
  • [2] High-content analysis
    Liszewski, Kathy
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2008, 28 (01): : 1 - +
  • [3] Improvements in high-throughput, high-content analysis of single cells
    Tarnok, Attila
    CYTOMETRY PART A, 2013, 83A (04) : 331 - 332
  • [4] High-Content Analysis of Single Cells using a Wide-Field Imaging Sensor
    Tanaka, T.
    Yoshino, T.
    Maeda, Y.
    Saeki, T.
    Negishi, R.
    Iwata, R.
    Kogiso, A.
    Dobashi, H.
    Matsunaga, T.
    CHEMICAL SENSORS 12: CHEMICAL AND BIOLOGICAL SENSORS AND ANALYTICAL SYSTEMS, 2016, 75 (16): : 139 - 146
  • [5] High-content analysis in neuroscience
    Mike Dragunow
    Nature Reviews Neuroscience, 2008, 9 : 779 - 788
  • [6] SRS Image Cytometry for High-Content Single Cell Analysis
    Huang, Kai-Chih
    Li, Junjie
    Zhang, Chi
    Cheng, Ji-Xin
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES XIX, 2019, 10882
  • [7] High-Content Cytotoxicity Analysis
    Wylie, Paul
    Janes, Mike
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2009, 29 (11): : 32 - 33
  • [8] High-Content Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning
    Kandaswamy, Chetak
    Silva, Luis M.
    Alexandre, Luis A.
    Santos, Jorge M.
    JOURNAL OF BIOMOLECULAR SCREENING, 2016, 21 (03) : 252 - 259
  • [9] High-content single-cell analysis on-chip using a laser microarray scanner
    Zhou, Jing
    Wu, Yu
    Lee, Sang-Kwon
    Fan, Rong
    LAB ON A CHIP, 2012, 12 (23) : 5025 - 5033
  • [10] Using a Microfluidic Device for High-Content Analysis of Cell Signaling
    Cheong, Raymond
    Wang, Chiaochun Joanne
    Levchenko, Andre
    SCIENCE SIGNALING, 2009, 2 (75) : pl2