A fast interface solver for the biharmonic Dirichlet problem on polygonal domains

被引:0
|
作者
B.N. Khoromskij
G. Schmidt
机构
[1] Joint Institute for Nuclear Research,
[2] 141980 Dubna,undefined
[3] Moscow reg.,undefined
[4] Russia ,undefined
[5] Weierstrass Institut for Applied Analysis and Stochastics,undefined
[6] Mohrenstr. 39,undefined
[7] D–10117 Berlin,undefined
[8] Germany ,undefined
来源
Numerische Mathematik | 1998年 / 78卷
关键词
Mathematics Subject Classification (1991): 31A30, 35J40, 65N30, 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose and analyze an efficient discretization scheme for the boundary reduction of the biharmonic Dirichlet problem on convex polygonal domains. We show that the biharmonic Dirichlet problem can be reduced to the solution of a harmonic Dirichlet problem and of an equation with a Poincaré-Steklov operator acting between subspaces of the trace spaces. We then propose a mixed FE discretization (by linear elements) of this equation which admits efficient preconditioning and matrix compression resulting in the complexity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\log \varepsilon^{-1} O ( N \log^qN)$\end{document}. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $N$\end{document} is the number of degrees of freedom on the underlying boundary, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\varepsilon > 0$\end{document} is an error reduction factor, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $q = 2$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $q = 3$\end{document} for rectangular or polygonal boundaries, respectively. As a consequence an asymptotically optimal iterative interface solver for boundary reductions of the biharmonic Dirichlet problem on convex polygonal domains is derived. A numerical example confirms the theory.
引用
收藏
页码:577 / 596
页数:19
相关论文
共 50 条