First and Second Cohomologies of Grading-Restricted Vertex Algebras

被引:0
|
作者
Yi-Zhi Huang
机构
[1] Peking University,Beijing International Center for Mathematical Research
[2] CAS,Kavali Institute For Theoretical Physics China
[3] Rutgers University,Department of Mathematics
来源
Communications in Mathematical Physics | 2014年 / 327卷
关键词
Equivalence Class; Vertex Operator; Identity Property; Vertex Operator Algebra; Absolute Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Let V be a grading-restricted vertex algebra and W a V-module. We show that for any m∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m\in \mathbb{Z}_{+}}$$\end{document}, the first cohomology Hm1(V,W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^{1}_{m}(V, W)}$$\end{document} of V with coefficients in W introduced by the author is linearly isomorphic to the space of derivations from V to W. In particular, Hm1(V,W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^{1}_{m}(V, W)}$$\end{document} for m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m\in \mathbb{N}}$$\end{document} are equal (and can be denoted using the same notation H1(V, W)). We also show that the second cohomology H122(V,W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^{2}_{\frac{1}{2}}(V, W)}$$\end{document} of V with coefficients in W introduced by the author corresponds bijectively to the set of equivalence classes of square-zero extensions of V by W. In the case that W = V, we show that the second cohomology H122(V,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^{2}_{\frac{1}{2}}(V, V)}$$\end{document} corresponds bijectively to the set of equivalence classes of first order deformations of V.
引用
收藏
页码:261 / 278
页数:17
相关论文
共 7 条