Local existence in time of solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data

被引:0
作者
Nakao Hayashi
机构
[1] Science University of Tokyo,Department of Applied Mathematics
来源
Journal d’Analyse Mathématique | 1997年 / 73卷
关键词
Global Existence; Smallness Condition; Local Existence; Small Solution; Weighted Sobolev Space;
D O I
暂无
中图分类号
学科分类号
摘要
We study the initial value problem for the elliptic-hyperbolic Davey-Stewartson systems {ie133-01} where {ie133-2},u is a complex valued function and φ is a real valued function. When (c1,c2) = (-1, 2) the system (*) is called DSI equation in the inverse scattering literature. Our purpose in this paper is to prove the local existence of a unique solution to (*) in the Sobolev spaceH2(R2) without the smallness condition on the data which were assumed in previous works [7], [17], [19], [26], Our result is a positive answer to Question 7 in [24].
引用
收藏
页码:133 / 164
页数:31
相关论文
共 43 条
  • [1] Ablowitz J. M.(1984)On the inverse scattering transform of multidimensional nonlinear equations J. Math. Phys. 25 2494-2505
  • [2] Fokas A. S.(1975)Nonlinear evolution equations in two and three dimensions Phys. Rev. Lett. 35 1185-1188
  • [3] Ablowitz J. M.(1978)On the soliton solutions of the Davey-Stewartson equation for long waves Proc. Roy. Soc. London Ser. A 360 529-540
  • [4] Haberman R.(1969)Wave instabilities Stud. Appl. Math. 48 377-385
  • [5] Anker D.(1990)Decay estimates of Schrödinger equations Comm. Math. Phys. 127 101-108
  • [6] Freeman N. C.(1979)Solutions of the generalized nonlinear Schrödinger equation in two spatial dimensions J. Math. Phys. 20 199-209
  • [7] Benney D. J.(1974)On three-dimensional packets of surface waves Proc. Roy. Soc. London Ser. A 338 101-110
  • [8] Roskes G. L.(1977)On two-dimensional packets of capillary-gravity waves J. Fluid Mech. 79 703-714
  • [9] Constantin P.(1994)On the Cauchy problem for Schrödinger type equations and regularity of solutions J. Math. Kyoto Univ. 34 319-328
  • [10] Cornille H.(1988)Recursion operators and bi-Hamiltonian structures in multi-dimensions I Comm. Math. Phys. 115 375-419