Generalized symplectic symmetric spaces

被引:0
作者
Maciej Bocheński
Aleksy Tralle
机构
[1] University of Warmia and Mazury,Department of Mathematics and Computer Science
来源
Geometriae Dedicata | 2014年 / 171卷
关键词
Symplectic structure; Generalized symmetric space; Lie group; 53C15; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
Bieliavsky introduced and investigated a class of symplectic symmetric spaces, that is, symmetric spaces endowed with a symplectic structure invariant with respect to symmetries. The theory of symmetric spaces has essential and interesting generalizations due to the fundamental work of Gray and Wolf continued by many researchers. Therefore, we ask a question about possible symplectic versions of such theory. In this paper we do obtain such generalization, and, in particular, give a list of all symplectic 3-symmetric manifolds with simple groups of transvections. We also show a method of constructing semisimple (noncompact) symplectic k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-symmetric spaces from a given (compact) Kähler k-symmetric space.
引用
收藏
页码:329 / 343
页数:14
相关论文
共 50 条
[41]   Extendable symplectic structures and the inverse problem of the calculus of variations for systems of equations written in generalized Kovalevskaya form [J].
Druzhkov, K. P. .
JOURNAL OF GEOMETRY AND PHYSICS, 2021, 161
[42]   Projective Completions of Jordan Pairs, Part II: Manifold Structures and Symmetric Spaces [J].
Wolfgang Bertram ;
Karl-Hermann Neeb .
Geometriae Dedicata, 2005, 112 :73-113
[43]   Bourgain-Brezis inequalities on symmetric spaces of non-compact type [J].
Chanillo, Sagun ;
Van Schaftingen, Jean ;
Yung, Po-Lam .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (04) :1504-1547
[44]   On splitting rank of non-compact-type symmetric spaces and bounded cohomology [J].
Wang, Shi .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2020, 12 (02) :465-489
[45]   Projective completions of Jordan pairs, part II: Manifold structures and symmetric spaces [J].
Bertram, W ;
Neeb, KH .
GEOMETRIAE DEDICATA, 2005, 112 (01) :73-113
[46]   On compact symmetric spaces associated to the exceptional Lie group E-6 [J].
Verhoczki, Laszlo .
NOTE DI MATEMATICA, 2009, 29 (01) :185-200
[47]   Tubular structures of compact symmetric spaces associated with the exceptional lie group F4 [J].
Csikós, B ;
Verhóczki, L .
GEOMETRIAE DEDICATA, 2004, 109 (01) :239-252
[48]   Tubular Structures of Compact Symmetric Spaces Associated with the Exceptional Lie Group F4 [J].
Balázs Csikós ;
László Verhóczki .
Geometriae Dedicata, 2004, 109 :239-252
[49]   CALCULUS ON SYMPLECTIC MANIFOLDS [J].
Eastwood, Michael ;
Slovak, Jan .
ARCHIVUM MATHEMATICUM, 2018, 54 (05) :265-280
[50]   Symplectic cohomologies and deformations [J].
Nicoletta Tardini ;
Adriano Tomassini .
Bollettino dell'Unione Matematica Italiana, 2019, 12 :221-237