Effect of charge on the maximum mass of the anisotropic strange quark star

被引:0
|
作者
A Saha
K B Goswami
B Das
P K Chattopadhyay
机构
[1] Coochbehar Panchanan Barma University,Department of Physics
[2] Alipurduar College,Department of Physics
来源
Pramana | / 97卷
关键词
Strange star; compact object; Bag constant; anisotropy; electromagnetic field; 04.20.Jb; 04.20.-q; 95.30.Sf;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we have studied the solutions of Einstein–Maxwell field equations for compact objects in the presence of net electric charge. Interior physical 3-space is defined by Vaidya–Tikekar metric in spheroidal geometry. The metric is characterised by two parameters, namely, spheroidal parameter K and curvature parameter R. The nature of the interior fluid is considered to be anisotropic. Assuming strange matter equation of state (EOS) in the MIT Bag model for the interior matter content, namely, p=13(ρ-4B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{1}{3}(\rho -4B)$$\end{document}, where B is the Bag constant, we determine various physical properties of the charged compact star. We have taken the value of surface density ρs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{s}$$\end{document}(=4B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(=4B)$$\end{document} as a probe to evaluate the mass–radius relation for the compact star in the presence of net electric charge and using the range of B necessary for possible stable strange matter. It is interesting to note that in this model there exist a maximum radius of a star which depends on B. We further note that compactness of the star corresponding to the maximum radius always lies below the Buchdahl limit (<49)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(<\frac{4}{9})$$\end{document} for the maximum allowed value of the pressure anisotropy and electromagnetic field. Energy and causality conditions hold good throughout the star in the presence of charge also. Prediction of mass of the strange stars is possible in the present model. We have determined mass, radius, surface red-shift and other relevant physical parameters of the compact objects.
引用
收藏
相关论文
共 41 条
  • [1] Effect of charge on the maximum mass of the anisotropic strange quark star
    Saha, A.
    Goswami, K. B.
    Das, B.
    Chattopadhyay, P. K.
    PRAMANA-JOURNAL OF PHYSICS, 2022, 97 (01):
  • [2] Maximum mass of charged strange quark star in presence of strange quark mass (ms)
    Saha, A.
    Goswami, K. B.
    Roy, R.
    Chattopadhyay, P. K.
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [3] Dependence of maximum mass of strange star on finite strange quark mass (ms ≠ 0)
    Goswami, K. B.
    Saha, A.
    Chattopadhyay, P. K.
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (17)
  • [4] Anisotropic strange quark star in Finch-Skea geometry and its maximum mass for non-zero strange quark mass (ms ? 0)
    Das, B.
    Goswami, K. B.
    Saha, A.
    Chattopadhyay, P. K.
    CHINESE PHYSICS C, 2023, 47 (05)
  • [5] Strange quark mass (ms) dependent model of anisotropic strange quark star
    Hakim, A.
    Goswami, K. B.
    Chattopadhyay, P. K.
    CHINESE PHYSICS C, 2023, 47 (09)
  • [6] Maximum mass of anisotropic charged strange quark stars in a higher dimensional approach (D=4)
    Saha, A.
    Goswamiy, K. B.
    Dasz, B.
    Chattopadhyayx, P. K.
    CHINESE PHYSICS C, 2023, 47 (01)
  • [7] Properties of strange quark matter and strange star in a new mass scaling
    Wang, J. T.
    Peng, G. X.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2023, 32 (06):
  • [8] Anisotropic strange stars and its maximum mass in Finch-Skea geometry in dimensions D ≥ 4
    Das, B.
    Goswami, K. B.
    Saha, A.
    Chattopadhyay, P. K.
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [9] The physically realizable anisotropic strange star models
    P Tamta
    P Fuloria
    Indian Journal of Physics, 2022, 96 : 1577 - 1590
  • [10] The physically realizable anisotropic strange star models
    Tamta, P.
    Fuloria, P.
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (05) : 1577 - 1590