On the existence of hydrodynamic instability in single diffusive bottom heavy systems with permeable boundaries

被引:0
作者
A K GUPTA
R G SHANDIL
机构
[1] Himachal Pradesh University Centre for Evening Studies,Department of Mathematics
[2] Himachal Pradesh University,undefined
来源
Proceedings - Mathematical Sciences | 2011年 / 121卷
关键词
Convection; specific heat; permeable; hydrodynamic instability;
D O I
暂无
中图分类号
学科分类号
摘要
We utilize the reformulated equations of the classical theory, as derived by Banerjee et al. (J. Math. Anal. Appl.175 (1993) 458), to establish mathematically, the existence of hydrodynamic instability in single diffusive bottom heavy systems, when considered in the more general framework of the boundary conditions of the type specified by Beavers and Joseph (J. Fluid Mech.30 (1967) 197), in the parameter regime T0α2 > 1, where T0 and α2 being some properly chosen mean temperature and coefficient of specific heat (at constant volume) variation due to temperature variation respectively.
引用
收藏
页码:495 / 501
页数:6
相关论文
共 14 条
[1]  
Banerjee MB(1993)Breakdown of the classical equations and existence of hydrodynamic instability in single diffusive bottom heavy systems J. Math. Anal. Appl. 175 458-475
[2]  
Gupta JR(1967)Boundary conditions at a naturally permeable wall J. Fluid. Mech. 30 197-207
[3]  
Shandil RG(1900)Les tourbillons cellulaires dans une napple liquid Revue générale des Sciences pures et appliqués 11 1261-1271
[4]  
Prakash J(1901)Les tourbillons cellulaires dans une napple liquide transportant de la chaleur par cinvection en régime permanent Ann. Chimie (Paris) 23 62-144
[5]  
Beavers GS(1992)The effect of permeable boundaries in the Bénard convection problem J. Math. Phy. Sci. 26 341-343
[6]  
Joseph DD(1940)On the maintained convective motion in a fluid heated from below Proc. R. Soc. 176 312-343
[7]  
Bénard H(1916)On convection currents in a horizontal layer of fluid, when the higher temperature is on the underside Philos. Mag. 32 529-546
[8]  
Bénard H(1958)Some further results on the Bénard problem Phys. Fluids 1 102-110
[9]  
Nield DA(undefined)undefined undefined undefined undefined-undefined
[10]  
Pellew A(undefined)undefined undefined undefined undefined-undefined