Differentiating prostate cancer from benign prostatic hyperplasia using whole-lesion histogram and texture analysis of diffusion- and T2-weighted imaging

被引:0
作者
Pengyi Xing
Luguang Chen
Qingsong Yang
Tao Song
Chao Ma
Robert Grimm
Caixia Fu
Tiegong Wang
Wenjia Peng
Jianping Lu
机构
[1] Changhai Hospital of Shanghai,Department of Radiology
[2] The Second Military Medical University,Application Predevelopment
[3] Siemens Healthcare,undefined
[4] MR Application Development,undefined
[5] Siemens Shenzhen Magnetic Resonance Ltd,undefined
来源
Cancer Imaging | / 21卷
关键词
Prostate cancer; Prostatic Hyperplasia; Magnetic resonance imaging; Diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Preoperative T2-weighted MR imaging texture analysis of gastric cancer: prediction of TNM stages
    Qiao, Xiangmei
    Li, Zhengliang
    Li, Lin
    Ji, Changfeng
    Li, Hui
    Shi, Tingting
    Gu, Qing
    Liu, Song
    Zhou, Zhengyang
    Zhou, Kefeng
    ABDOMINAL RADIOLOGY, 2021, 46 (04) : 1487 - 1497
  • [32] Prediction of placenta accreta spectrum using texture analysis on coronal and sagittal T2-weighted imaging
    Ren, Hainan
    Mori, Naoko
    Mugikura, Shunji
    Shimizu, Hiroaki
    Kageyama, Sakiko
    Saito, Masatoshi
    Takase, Kei
    ABDOMINAL RADIOLOGY, 2021, 46 (11) : 5344 - 5352
  • [33] Prediction of placenta accreta spectrum using texture analysis on coronal and sagittal T2-weighted imaging
    Hainan Ren
    Naoko Mori
    Shunji Mugikura
    Hiroaki Shimizu
    Sakiko Kageyama
    Masatoshi Saito
    Kei Takase
    Abdominal Radiology, 2021, 46 : 5344 - 5352
  • [34] Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone
    Rud, Erik
    Klotz, Dagmar
    Rennesund, Kristin
    Baco, Eduard
    Berge, Viktor
    Lien, Diep
    Svindland, Aud
    Lundeby, Eskild
    Berg, Rolf E.
    Eri, Lars M.
    Eggesbo, Heidi B.
    BJU INTERNATIONAL, 2014, 114 (6B) : E32 - E42
  • [35] Usefulness of a Combined Approach of T1-Weighted, T2-Weighted, Dynamic Contrast-Enhanced, and Diffusion-Weighted Imaging in Prostate Cancer
    Dal Min, Byung
    Kim, Won Tae
    Cho, Bum Sang
    Kim, Yong-June
    Yun, Seok Joong
    Lee, Sang-Cheol
    Kim, Wun-Jae
    KOREAN JOURNAL OF UROLOGY, 2012, 53 (12) : 830 - 835
  • [36] Extracapsular Extension in Prostate Cancer: Added Value of Diffusion-Weighted MRI in Patients With Equivocal Findings on T2-Weighted Imaging
    Woo, Sungmin
    Cho, Jeong Yeon
    Kim, Sang Youn
    Kim, Seung Hyup
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2015, 204 (02) : W168 - W175
  • [37] Prostate Cancer Detection With 3 T MRI: Comparison of Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced MRI in Combination With T2-Weighted Imaging
    Kitajima, Kazuhiro
    Kaji, Yasushi
    Fukabori, Yoshitatsu
    Yoshida, Ken-ichiro
    Suganuma, Narufumi
    Sugimura, Kazuro
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 31 (03) : 625 - 631
  • [38] Whole-Lesion Histogram Analysis of the Apparent Diffusion Coefficient as a Quantitative Imaging Biomarker for Assessing the Level of Tumor-Infiltrating Lymphocytes: Value in Molecular Subtypes of Breast Cancer
    Tang, Wen-jie
    Jin, Zhe
    Zhang, Yan-ling
    Liang, Yun-shi
    Cheng, Zi-xuan
    Chen, Lei-xin
    Liang, Ying-ying
    Wei, Xin-hua
    Kong, Qing-cong
    Guo, Yuan
    Jiang, Xin-qing
    FRONTIERS IN ONCOLOGY, 2021, 10
  • [39] Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging
    Delongchamps, Nicolas Barry
    Rouanne, Mathieu
    Flam, Thierry
    Beuvon, Frederic
    Liberatore, Mathieu
    Zerbib, Marc
    Cornud, Francois
    BJU INTERNATIONAL, 2011, 107 (09) : 1411 - 1418
  • [40] Differentiating Prostate Cancer from Benign Prostatic Hyperplasia Using PSAD Based on Machine Learning: Single-Center Retrospective Study in China
    Zhang, Yi-Yan
    Li, Qin
    Xin, Yi
    Lv, Wei-Qi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (03) : 936 - 941