Augmented spectral formulation for the Stokes problem with variable viscosity and mixed boundary conditions

被引:0
作者
C. Bousbiat
Y. Daikh
S. Maarouf
D. Yakoubi
机构
[1] Université de Jijel,
[2] Laboratoire Analyse,undefined
[3] Optimisation et Traitement de l’Information,undefined
[4] Léonard de Vinci Pôle Universitaire,undefined
[5] Research Center,undefined
来源
Calcolo | 2023年 / 60卷
关键词
Stokes equations; Variable viscosity; Augmented formulation; Mixed boundary conditions; Spectral methods; A priori estimates; 35Q30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the analysis of a new augmented formulation in terms of vorticity, velocity and pressure for the Stokes equations with variable viscosity and mixed boundary conditions. The well-posedness of the continuous problem holds under assumptions on the viscosity. When the domain is a parallelepiped, the spectral discretization is proposed using the Galerkin method with numerical integration. Then, we prove the well-posedness of the obtained discrete problem under the same type of conditions on the viscosity. A priori error estimates is then derived for the three unknowns. Finally, numerical experiments are presented that confirm the interest of the discretization.
引用
收藏
相关论文
共 37 条
[1]  
Amrouche C(1998)Vector potentials in three-dimensional non-smooth domains Math. Methods Appl. Sci. 21 823-864
[2]  
Bernardi C(2019)Incorporating variable viscosity in vorticity-based formulations for Brinkman equations C. R. Math. Acad. Sci. Paris 357 552-560
[3]  
Dauge M(2018)Well-posed stokes/brinkman and Stokes/Darcy coupling revisited with new jump interface conditions ESAIM Math. Model. Numer. Anal. 52 1875-1911
[4]  
Girault V(2006)Spectral discretization of the vorticity, velocity, and pressure formulation of the stokes problem SIAM J. Numer. Anal. 44 826-850
[5]  
Anaya V(2010)A new finite-element discretization of the stokes problem coupled with the Darcy equations IMA J. Numer. Anal. 30 61-93
[6]  
Gómez-Vargas B(2009)A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions M2AN Math. Model. Numer. Anal. 43 1185-1201
[7]  
Mora D(1995)Couplage des équations de navier-stokes et de la chaleur: le modèle et son approximation par éléments finis ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 29 871-921
[8]  
Ruiz-Baier R(1995)Navier–Stokes equations with imposed pressure and velocity fluxes Int. J. Numer. Methods Fluids 20 267-287
[9]  
Angot P(2016)Spectral element discretization of the heat equation with variable diffusion coefficient Comment. Math. Univ. Carol. 57 185-200
[10]  
Bernardi C(2002)Vorticity-velocity-pressure formulation for the stokes problem Math. Methods Appl. Sci. 25 1091-1119