The B¯→K¯πℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B}\to \overline{K}\pi \ell \ell $$\end{document} and B¯s→K¯Kℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{B}}_s\ \to \overline{K}K\ell \ell $$\end{document} distributions at low hadronic recoil

被引:0
作者
Diganta Das
Gudrun Hiller
Martin Jung
Alex Shires
机构
[1] Technische Universität Dortmund,Institut für Physik
关键词
Rare Decays; B-Physics; Heavy Quark Physics;
D O I
10.1007/JHEP09(2014)109
中图分类号
学科分类号
摘要
The rare multi-body decays B¯→K¯πℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B}\to \overline{K}\pi \ell \ell $$\end{document} and B¯s→K¯Kℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{B}}_s\ \to \overline{K}K\ell \ell $$\end{document} are both important as backgrounds to precision analyses in the benchmark modes B¯→K¯*ℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B}\to {\overline{K}}^{*}\ell \ell $$\end{document} and B¯s→ϕℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{B}}_s\to \phi \ell \ell $$\end{document} as well as sensitive probes of flavor physics in and beyond the standard model. We work out non-resonant contributions to B¯→K¯πℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B}\to \overline{K}\pi \ell \ell $$\end{document} and B¯s→K¯Kℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{B}}_s\ \to \overline{K}K\ell \ell $$\end{document} amplitudes, where ℓ = e,μ, at low hadronic recoil in a model-independent way. Using the operator product expansion in 1/mb, we present expressions for the full angular distribution. The latter allows to probe new combinations of |ΔB| = |ΔS| = 1 couplings and gives access to strong phases between non-resonant and resonant contributions. Exact endpoint relations between transversity amplitudes based on Lorentz invariance are obtained. Several phenomenological distri- butions including those from the angular projections to the S-, P-, D-waves are given. Standard model branching ratios for non-resonant B¯→K¯πℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B}\to \overline{K}\pi \ell \ell $$\end{document} and B¯s→K¯Kℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{B}}_s\ \to \overline{K}K\ell \ell $$\end{document} decays are found to be in the few 10−8 region, but drop significantly if cuts around the K* or ϕ mass are employed. Nevertheless, the non-resonant contributions to B¯→K¯πℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B}\to \overline{K}\pi \ell \ell $$\end{document} provide the dominant background in the B¯→K¯*ℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B}\to {\overline{K}}^{*}\ell \ell $$\end{document} signal region with respect to the low mass scalars. In B¯s→K¯Kℓℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{B}}_s\ \to \overline{K}K\ell \ell $$\end{document}, the narrowness of the ϕ allows for more efficient background control. We briefly discuss lepton-flavor non-universal effects, also in view of the recent data on RK.
引用
收藏
相关论文
共 91 条
[1]  
Buchalla G(2013)Implications of LHCb measurements and future prospects Eur. Phys. J. C 73 2373-undefined
[2]  
Isidori G(1998)Nonperturbative effects in Nucl. Phys. B 525 333-undefined
[3]  
Grinstein B(2004) for large dilepton invariant mass Phys. Rev. D 70 11 4005-undefined
[4]  
Pirjol D(2011)Exclusive rare B → K Eur. Phys. J. C 71 1635-undefined
[5]  
Beylich M(2010)ℓ JHEP 07 098-undefined
[6]  
Buchalla G(2013)ℓ Phys. Rev. D 87 034016-undefined
[7]  
Feldmann T(1992) decays at low recoil: Controlling the long-distance effects Phys. Lett. B 280 287-undefined
[8]  
Bobeth C(1992)Theory of B → K Phys. Rev. D 46 5040-undefined
[9]  
Hiller G(2013)ℓ JHEP 10 011-undefined
[10]  
van Dyk D(2014)ℓ Phys. Rev. D 89 014015-undefined