Shape Invariant Potentials in “Discrete Quantum Mechanics”

被引:0
作者
Satoru Odake
Ryu Sasaki
机构
[1] Shinshu University,Department of Physics
[2] Kyoto University,Yukawa Institute for Theoretical Physics
来源
Journal of Nonlinear Mathematical Physics | 2005年 / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Shape invariance is an important ingredient of many exactly solvable quantum mechanics. Several examples of shape invariant “discrete quantum mechanical systems” are introduced and discussed in some detail. They arise in the problem of describing the equilibrium positions of Ruijsenaars-Schneider type systems, which are “discrete” counterparts of Calogero and Sutherland systems, the celebrated exactly solvable multi-particle dynamics. Deformed Hermite and Laguerre polynomials are the typical examples of the eigenfunctions of the above shape invariant discrete quantum mechanical systems.
引用
收藏
页码:507 / 521
页数:14
相关论文
共 28 条
[1]  
Gendenshtein LE(1983)Derivation of exact spectra of the Schrodinger equation by means of supersymmetry JETP Lett 38 356-359
[2]  
Atakishiyev NA(1985)“The Hahn and Meixner polynomials of an imaginary argument and some of their applications” J. Phys A18 1583-1696
[3]  
Suslov SK(1986)“Resolution of operator-ordering problem by the method of finite elements” Phys. Rev. Lett 56 2445-2448
[4]  
Bender CM(1971)“Solution of the one-dimensional J. Math. Phys 12 419-436
[5]  
Mead LR(1986)-body problem with quadratic and/or inversely quadratic pair potentials” Annals Phys 170 370-405
[6]  
Pinsky SS(1977)A New Class Of Integrable Systems And Its Relation To Solitons Lett. Nuovo Cim 19 505-507
[7]  
Calogero F(1885)“On the zeros of the classical polynomials” Compt. Rend 100 439-440
[8]  
Ruijsenaars SNM(2002)“Sur quelques théorèmes d’Algèbre” J. Phys A35 7017-7062
[9]  
Schneider H(2004)“Quantum vs Classical Integrability in Calogero-Moser Systems” J. Phys A37 469-479
[10]  
Calogero F(1951)Quantum vs Classical Integrability in Ruijsenaars-Schneider Systems Rev. Mod. Phys 23 21-68