Cyclic codes over a non-commutative finite chain ring

被引:0
作者
R. Sobhani
机构
[1] University of Isfahan,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Cryptography and Communications | 2018年 / 10卷
关键词
Chain rings; Left (right) cyclic codes; Left (right) dual; Self-dual codes; Torsion codes; Gray map; Primary 11T71; Secondary 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we consider the finite (not necessary commutative) chain ring R:=Fpm[u,θ]/u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}:=\mathbb {F}_{p^{m}}[u,\theta ]/{\left < u^{2} \right >}$\end{document}, where θ is an automorphism of Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p^{m}}$\end{document}, and completely explore the structure of left and right cyclic codes of any length N over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}$\end{document}, that is, left and right ideals of the ring S:=R[x]/xN−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {S}:=\mathcal {R}[x]/{\left < x^{N}-1 \right >}$\end{document}. For a left (right) cyclic code, we determine the structure of its right (left) dual. Using the fact that self-dual codes are bimodules, we discuss on self-dual cyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}$\end{document}. Finally, we study Gray images of cyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}$\end{document} and as some examples, three linear codes over F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{4}$\end{document} with the parameters of the best known ones, but with different weight distributions, are obtained as the Gray images of cyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}$\end{document}.
引用
收藏
页码:519 / 530
页数:11
相关论文
共 50 条
[1]  
Abualrub T(2007)Cyclic codes over the rings Des. Codes Crypt. 42 273-287
[2]  
Siap I(2013) and J. Franklin Inst. 350 2837-2847
[3]  
Alahmadi A(2003)Cyclic codes over IEEE Trans. Inform. Theory 49 1417-1424
[4]  
Soboui H(1999)Negacyclic codes over IEEE Trans. Inform. Theory 45 1250-1255
[5]  
Sole P(2010) of even length Finite Fields Appl. 16 100-115
[6]  
Yemen O(2009)Cyclic codes and self-dual codes over IEEE Trans. Inform. Theory 55 1730-1740
[7]  
Blackford T(2010)Quasi-cyclic codes as codes over ring of matrices Journal of Algebra 324 940-950
[8]  
Bonnecaze A(2004)Constacyclic codes of length 2 IEEE Trans. Inform. Theory 50 1728-1744
[9]  
Udaya P(2016) over Galois extention rings of AAECC 27 185-203
[10]  
Cayrel P(2007)Constacyclic codes of length Finite Fields Appl. 13 31-57