Existence and concentration of solutions for a quasilinear elliptic field equation

被引:0
作者
Ricardo L. Alves
Claudianor O. Alves
机构
[1] Universidade Federal do Acre–UFAC,Centro de Ciências Exatas e Tecnológicas
[2] Universidade Federal de Campina Grande,Unidade Acadêmica de Matemática
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2023年 / 202卷 / 4期
关键词
Nonlinear Schrödinger equation; Existence; Concentration; Topological charge; Primary: 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and concentration of solution for the following class of quasilinear problem -ħ2Δv+V(x)v-ħpΔpv+W′(v)=0x∈RN,(Pħ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\hbar ^{2} \Delta v+ V(x)v-\hbar ^{p}\Delta _{p} v + W^{\prime }(v)=0\, \,x\in {\mathbb {R}}^{N}, \qquad \qquad \qquad \qquad (P_{\hbar }) \end{aligned}$$\end{document}when ħ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar >0$$\end{document} is small enough, where v:RN→RN+1,3≤N<p,ħ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}^{N+1}, 3\le N<p, \hbar >0,$$\end{document}W is a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} singular functional that satisfies some technical conditions and the potential V is continuous functions with lim inf|x|→+∞V(x)≡V∞>infx∈RNV(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \liminf _{\vert x\vert \rightarrow +\infty }V(x)\equiv V_{\infty }>\inf _{x \in {\mathbb {R}}^N}V(x)>0$$\end{document} . Moreover, we also consider the existence of solution for all ħ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar >0$$\end{document} when V is a radial function.
引用
收藏
页码:1591 / 1610
页数:19
相关论文
共 34 条
[1]  
Alves CO(2018)Existence and multiplicity of solutions for a class of quasilinear elliptic field equation on ESAIM Control Optim. Calc. Var. 24 1231-1248
[2]  
dos Santos ACB(2001)Existence, multiplicity and concentration of bound states for a quasilinear elliptic field equation Calc. Var. 12 223-258
[3]  
Badiale M(2001)Semiclassical limit for a quasilinear elliptic field equation: one-peak and multi-peak solutions Adv. Differ. Equ. 6 385-418
[4]  
Benci V(2000)Solitons in several space dimensions: Derrick’s problem and infinitely solutions Arch. Ration. Mech. Anal. 154 297-324
[5]  
D’Aprile T(1996)Remarks on topological solitons Topol. Methods Nonlinear Anal. 7 349-367
[6]  
Badiale M(1998)Soliton like solutions of a Lorentz invariant equation in dimension 3 Rev. Math. Phys. 6 315-344
[7]  
Benci V(2002)An eigenvalue problem for a quasilinear elliptic field equation J. Differ. Equ. 184 299-320
[8]  
D’Aprile T(2001)An eigenvalue problem for a quasilinear elliptic field equation on Topol. Methods Nonlinear Anal. 17 191-211
[9]  
Benci V(1999)Solitons and electromagnetic field Math. Z. 232 349-367
[10]  
D’Avenia P(2004)Semiclassical states for a class of nonlinear elliptic field equations Asymptot. Anal. 37 109-141