A high-order compact finite difference scheme and its analysis for the time-fractional diffusion equation

被引:0
作者
Pradip Roul
V. M. K. Prasad Goura
Ravi Agarwal
机构
[1] VNIT,Department of Mathematics
[2] Amrita Vishwa Vidyapeetham,Department of Mathematics, Amrita School of Engineering
[3] Texas A & M University- Kingsville,Department of Mathematics
来源
Journal of Mathematical Chemistry | 2023年 / 61卷
关键词
Time-fractional diffusion equation; Compact difference scheme; Convergence; Stability; Caputo’s derivative;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a high-order computational scheme for numerical solution of a time-fractional diffusion equation (TFDE). This scheme is discretized in time by means of L1-scheme and discretized in space using a compact finite difference method. Stability analysis of the method is discussed. Further, convergence analysis of the present numerical scheme is established and we show that this scheme is of O(Δt2-α+Δx4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({\Delta t}^{2-\alpha }+{\Delta x}^{4})$$\end{document} convergence, where α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is the order of fractional derivative (FD) appearing in the governing equation and Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta t$$\end{document} and Δx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta x$$\end{document} are the step sizes in temporal and spatial direction, respectively. Three numerical examples are considered to illustrate the accuracy and performance of the method. In order to show the advantage of the proposed method we compare our results with those obtained by finite element method and B-spline method. Comparison reveals that the proposed method is fast convergent and highly accurate. Moreover, the effect of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} on the numerical solution of TFDE is investigated. The CPU time of the present method is provided.
引用
收藏
页码:2146 / 2175
页数:29
相关论文
共 54 条
  • [1] Giona M(1992)Fractional diffusion equation and relaxation in complex viscoelastic materials Phys. A 191 449-453
  • [2] Cerbelli S(2022)A computational technique for solving the time-fractional Fokker-Planck equation Math. Method. Appl. Sci. 45 9736-9752
  • [3] Roman HE(2023)An efficient computational technique for solving a fractional-order model describing dynamics of neutron flux in a nuclear reactor Ann. Nucl. Energy 185 5592-5611
  • [4] Roul P(2022)Design and analysis of a high order computational technique for time-fractional Black-Scholes model describing option pricing Math. Method. Appl. Sci. 45 472-493
  • [5] Kumari T(2020)A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options Appl. Numer. Math. 151 454-474
  • [6] Rohil V(2020)A high order numerical method and its convergence for time-fractional fourth order partial differential equations Appl. Math. Comput. 366 2173-2186
  • [7] Roul P(2011)A finite element method for time fractional partial differential equations Fract. Calc. Appl. Anal. 14 1533-1552
  • [8] Rohil V(2016)Cubic B-spline collocation method and its application for anomalous fractional diffusion equations in transport dynamic systems J. Vib. Control 22 1334-1344
  • [9] Espinosa-Paredes G(2007)Finite difference/spectral approximations for the time fractional diffusion equation J. Comput. Phys. 225 1138-1145
  • [10] Obaidurrahman K(2019)A finite element approximation for a class of Caputo time-fractional diffusion equations Comput. Math. Appl. 78 87-99