An optimized feature selection based on genetic approach and support vector machine for heart disease

被引:0
|
作者
Chandra Babu Gokulnath
S. P. Shantharajah
机构
[1] VIT University,School of Information Technology and Engineering
来源
Cluster Computing | 2019年 / 22卷
关键词
Heart disease diagnosis; Support vector machine; Genetic algorithm; Roulette wheel selection; Receiver operating characteristic; Crossover; Mutation; Elitism;
D O I
暂无
中图分类号
学科分类号
摘要
Heart disease diagnosis is found to be a challenging issue which can offer a computerized estimate about the level of heart disease so that supplementary action can be made easy. Thus, heart disease diagnosis has expected massive attention worldwide among the healthcare environment. Optimization algorithms played a significant role in heart disease diagnosis with good efficiency. The objective of this paper is to propose an optimization function on the basis of support vector machine (SVM). This objective function is used in the genetic algorithm (GA) for selecting the more significant features to get heart disease. The experimental results of the GA–SVM are compared with the various existing feature selection algorithms such as Relief, CFS, Filtered subset, Info gain, Consistency subset, Chi squared, One attribute based, Filtered attribute, Gain ratio, and GA. The receiver operating characteristic analysis is performed to evaluate the good performance of SVM classifier. The proposed framework is demonstrated in the MATLAB environment with a dataset collected from Cleveland heart disease database.
引用
收藏
页码:14777 / 14787
页数:10
相关论文
共 50 条
  • [21] A novel feature selection method based on quantum support vector machine
    Wang, Haiyan
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [22] The research on the method of feature selection in support vector Machine based Entropy
    Zhu, Xiaoyan
    Tian, Xi
    Zhu, Xiaoxun
    PROGRESS IN POWER AND ELECTRICAL ENGINEERING, PTS 1 AND 2, 2012, 354-355 : 1192 - +
  • [23] Feature Selection Method Based on Mutual Information and Support Vector Machine
    Liu, Gang
    Yang, Chunlei
    Liu, Sen
    Xiao, Chunbao
    Song, Bin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (06)
  • [24] Reseach on Feature Selection Algorithm Based on the margin of Support Vector Machine
    Hu, Linfang
    Qiao, Lei
    Huang, Minde
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 1430 - 1434
  • [25] Support vector machine for intrusion detection based on LSI feature selection
    Yang, Qing
    Li, Fangmin
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 4113 - +
  • [26] INTRUSION DETECTION SYSTEM BASED ON FEATURE SELECTION AND SUPPORT VECTOR MACHINE
    Zhang Xue-qin
    Gu Chun-hua
    Lin Jia-jun
    2006 FIRST INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA, 2006,
  • [27] An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    Li, Shijin
    Wu, Hao
    Wan, Dingsheng
    Zhu, Jiali
    KNOWLEDGE-BASED SYSTEMS, 2011, 24 (01) : 40 - 48
  • [28] Feature clustering based support vector machine recursive feature elimination for gene selection
    Huang, Xiaojuan
    Zhang, Li
    Wang, Bangjun
    Li, Fanzhang
    Zhang, Zhao
    APPLIED INTELLIGENCE, 2018, 48 (03) : 594 - 607
  • [29] Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
    Gold, C
    Holub, A
    Sollich, P
    NEURAL NETWORKS, 2005, 18 (5-6) : 693 - 701
  • [30] Feature clustering based support vector machine recursive feature elimination for gene selection
    Xiaojuan Huang
    Li Zhang
    Bangjun Wang
    Fanzhang Li
    Zhao Zhang
    Applied Intelligence, 2018, 48 : 594 - 607