A theorem for solving Banach generalized system of variational inequality problems and fixed point problem in uniformly convex and 2-uniformly smooth Banach space

被引:0
作者
Bunyawee Chaloemyotphong
Atid Kangtunyakarn
机构
[1] King Mongkut’s Institute of Technology Ladkrabang,Department of Mathematics, Faculty of Science
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2021年 / 115卷
关键词
Fixed point problem; Nonexpansive mapping; Variational inequality problem; 47H10; 47H07; 47J30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a Banach generalized system of variational inequality problems by using the concept of Kangtunyakarn (Fixed Point Theory Appl 2014:123, 2014) and showed the equivalence between a Banach generalized system of variational inequality problems and fixed point problems. And also, using modified viscosity iterative method, we prove a strong convergence theorem for finding a common solution of a Banach generalized system of variational inequality problems and fixed point problems for a nonexpansive mapping. The main theorem presented in this paper extend the corresponding result of variational inequality problems introduced by Aoyama et al. (Fixed Point Theory Appl 2006:35390, https://doi.org/10.1155/FPTA/2006/35390, 2006). Moreover, we give some numerical examples for supporting our main theorem.
引用
收藏
相关论文
共 41 条
[1]  
Suantai S(2019)Iterative methods with perturbations for the sum of two accretive operators in q-uniformly smooth Banach spaces Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM 113 203-223
[2]  
Cholamjiak P(2019)A generalized forward–backward splitting method for solving a system of quasi variational inclusions in Banach spaces Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM 113 729-747
[3]  
Sunthrayuth P(2006)Weak convergence of an iterative sequence for accretive operators in Banach spaces Fixed Point Theory Appl. 2006 35390-1224
[4]  
Chang SS(2010)Modified extragradient methods for a system of variational inequalities in Banach spaces Acta Appl. Math. 110 1211-510
[5]  
Wen CF(2014)The modification of system of variational inequalities for fixed point theory in Banach spaces Fixed Point Theory Appl. 2014 123-3652
[6]  
Yao JC(2020)Iterative algorithm for approximating solutions of split monotone variational inclusion, variational inequality and fixed point problems in real Hilbert spaces Nonlinear Funct. Anal. Appl. 25 491-3652
[7]  
Aoyama K(2019)The modified viscosity implicit rules for variational inequality problems and fixed point problems of nonexpansive mappings in Hilbert spaces Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM 113 3545-713
[8]  
Iiduka H(2019)Systems of variational inequalities with hierarchical variational inequality constraints for asymptotically nonexpansive and pseudocontractive mappings Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM 113 3545-767
[9]  
Takahashi W(2019)Convergence analysis of viscosity implicit rules of nonexpansive mappings in Banach spaces Funct. Anal. Appl. 24 691-678
[10]  
Yao Y(2020)Explicit iterative methods for maximal monotone operators in Hilbert spaces Funct. Anal. Appl. 25 753-1138