A generalized modified HSS method for singular complex symmetric linear systems

被引:0
作者
Zhen Chao
Guo-Liang Chen
机构
[1] East China Normal University,Department of Mathematics, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice
来源
Numerical Algorithms | 2016年 / 73卷
关键词
Singular complex linear system; Semi-convergence; Iteration method; Hermitian and skew-Hermitian splitting; 65F08; 65F10; 65F35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, based on the Hermitian and skew-Hermitian splitting, we give a generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method to solve singular complex symmetric linear systems, this method has two parameters. We give the semi-convergent conditions, and some numerical experiments are given to illustrate the efficiency of this method.
引用
收藏
页码:77 / 89
页数:12
相关论文
共 25 条
[1]  
Bai Z-Z(2003)Hermitian and skew-Hermitian splitting methods for non- Hermitian positive definite linear systems SIAM J. Matrix Anal. Appl. 24 603-626
[2]  
Golub GH(2000)Efficient preconditioning scheme for block partitioned matrices with structured sparsity Numer. Linear Algebra Appl. 7 715-726
[3]  
Ng MK(2002)Finite elements in computational electromagnetism Acta. Numer. 11 237-339
[4]  
Poirier B(1999)Optical tomography in medical imaging Inverse Problem 15 R41-R93
[5]  
Hiptmair R(2008)Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal 28 598-618
[6]  
Arridge SR(2010)Modified HSS iteration methods for a class of complex symmetric linear systems Computing 87 93-111
[7]  
Benzi M(2011)On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer Algor 56 297-317
[8]  
Bertaccini D(2013)A Generalized Preconditioned MHSS Method for a Class of Complex Symmetric Linear Systems Math. Model. Anal 18 561-576
[9]  
Bai Z-Z(2013)On semi-convergence of modified HSS iteration methods, Numer Algor 64 507-518
[10]  
Benzi M(2014)The semi-convergence properties of MHSS method for a class of complex nonsymmetric singular linear systems, Numer Algor 66 705-719