Ladders of Compactly Generated Triangulated Categories and Preprojective Algebras

被引:0
作者
Nan Gao
Chrysostomos Psaroudakis
机构
[1] Shanghai University,Department of Mathematics
[2] University of Stuttgart,Institute of Algebra and Number Theory
来源
Applied Categorical Structures | 2018年 / 26卷
关键词
Recollement; Ladder; Preprojective algebra; Compactly generated triangulated category; 16E10; 16E65; 16G; 16G50; 16S50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we characterize when a recollement of compactly generated triangulated categories admits a ladder of some height going either upwards or downwards. As an application, we show that the derived category of the preprojective algebra of Dynkin type An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}_n$$\end{document} admits a periodic infinite ladder, where the one outer term in the recollement is the derived category of a differential graded algebra.
引用
收藏
页码:657 / 679
页数:22
相关论文
共 52 条
[1]  
Angeleri Hügel L(2017)Ladders and simplicity of derived module categories J. Algebra 472 15-66
[2]  
König S(2015)Grothendieck–Neeman duality and the Wirthmüller isomorphism Compos. Math. 152 1740-1776
[3]  
Liu QH(2013)Recollements from partial tilting complexes J. Algebra 388 338-363
[4]  
Yang D(1998)Koszul duality J. Geom. Phys. 5 317-350
[5]  
Balmer P(2007)Homological and homotopical aspects of torsion theories Mem. Am. Math. Soc. 188 viii+207-44
[6]  
Dell’Ambrogio I(1989)Representations of associative algebras and coherent sheaves, (Russian) Izv. Akad. Nauk SSSR Ser. Mat 53 25-99
[7]  
Sanders B(1988)Finite dimensional algebras and highest weight categories J. Reine Angew. Math. 391 85-521
[8]  
Bazzoni S(1988)Algebraic stratification in representation categories J. Algebra 117 504-56
[9]  
Pavarin A(2004)Comparison of abelian categories recollements Doc. Math. 9 41-529
[10]  
Beilinson A(2017)Gorenstein homological aspects of monomorphism categories via Morita rings Algebras Represent. Theory 20 487-12