Lie Symmetries and Exact Solutions of KdV–Burgers Equation with Dissipation in Dusty Plasma

被引:0
作者
Dig Vijay Tanwar
Abdul-Majid Wazwaz
机构
[1] Graphic Era Deemed to be University,Department of Mathematics
[2] Saint Xavier University,Department of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
KdV–Burgers equation; Infinitesimal generators; Symmetry reductions; Exact solutions;
D O I
暂无
中图分类号
学科分类号
摘要
This article investigates nonlinear behavior of ion acoustic waves in a plasma with superthermal electrons and isothermal positrons. We consider the KdV–Burgers equation with dissipation in dusty plasmas and construct Lie symmetries, infinitesimal generators and commutative relations under invariance property of Lie groups of transformations. The adjoint relations and invariant functions lead to one dimensional optimal system. We derive similarity variables by using Lie group analysis, where the KdV–Burgers equation reduces in over determined equations, which provide exact solutions. The solutions are absolutely new and more general than previous results (Fan et al. in Phys Lett A 17:376–380, 2001; Feng and Wang in Phys Lett A 308:173–178, 2003; Cimpoiasu in Roam J Phys 59:617–624, 2014; Arora and Chauhan in Int J Appl Comput Math 5:1–13, 2019) as that contain both the arbitrary functions f1(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1(t)$$\end{document} and f2(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_2(t)$$\end{document} as well as arbitrary constants. Due to existence of arbitrary constants and functions that may describe rich physical behavior. We discuss these solutions corporeally with their numerical simulation. Consequently, parabolic, elastic multi-soliton, compacton and their annihilation profiles are discussed systematically to make these findings more worthy.
引用
收藏
相关论文
共 102 条
[1]  
Pakzad HR(2011)Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons Astrophys. Space Sci. 331 169-174
[2]  
Tribeche M(2009)Small amplitude ion-acoustic double layers in a plasma with superthermal electrons and thermal positrons Phys. Plasmas 16 1460-1464
[3]  
Boubakour N(2012)Effect of viscosity on dust-ion acoustic shock wave in dusty plasma with negative ions Phys. Lett. A 376 289-296
[4]  
Adhikary NC(2016)Korteweg–deVries–Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions J. Theor. Appl. Phys. 10 L497-L501
[5]  
Michael M(2018)Dust acoustic shock waves in magnetized dusty plasma Plasma Sci. Technol. 20 376-380
[6]  
Willington NT(1994)Exact solutions to the two-dimensional Korteweg–de Vries–Burgers equation J. Phys. A: Math. Gen. 27 173-178
[7]  
Jayakumar N(2001)A new complex line soliton for the two-dimensional KdV–Burgerss equation Phys. Lett. A 17 617-624
[8]  
Sebastian S(2003)The first integral method to the two-dimensional Burgers–Korteweg–de Vries equation Phys. Lett. A 308 1-13
[9]  
Sreekala G(2014)Symmetry reduction and new wave solutions for the 2D Burger Kortweg–de Vries equation Roam. J. Phys. 59 291-296
[10]  
Venugopal C(2019)Lie symmetry analysis and some exact solutions of (2+1)-dimensional KdV–Burgers equation Int. J. Appl. Comput. Math. 5 996-998