A postprocessed Galerkin method with Chebyshev or Legendre polynomials

被引:0
|
作者
Javier de Frutos
Bosco García-Archilla
Julia Novo
机构
[1] Departamento de Matemática Aplicada y Computación,
[2] Universidad de Valladolid,undefined
[3] Valladolid,undefined
[4] Spain,undefined
[5] e-mail: {frutos,undefined
[6] jnovo}@mac.cie.uva.es,undefined
[7] Departamento de Matemáticas,undefined
[8] Universidad Autónoma de Madrid,undefined
[9] Madrid,undefined
[10] Spain. e-mail: Bosco@ccuam3.sdi.uam.es,undefined
来源
Numerische Mathematik | 2000年 / 86卷
关键词
Mathematics Subject Classification (1991): 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
We present an approximate-inertial-manifold-based postprocess to enhance Chebyshev or Legendre spectral Galerkin methods. We prove that the postprocess improves the order of convergence of the Galerkin solution, yielding the same accuracy as the nonlinear Galerkin method. Numerical experiments show that the new method is computationally more efficient than Galerkin and nonlinear Galerkin methods. New approximation results for Chebyshev polynomials are presented.
引用
收藏
页码:419 / 442
页数:23
相关论文
共 50 条