Two maximal subgroups of E8(2)

被引:0
|
作者
Chris Parker
Jan Saxl
机构
[1] University of Birmingham,School of Mathematics
[2] University of Cambridge,Department of Pure Mathematics and Mathematical Statistics Centre for Mathematical Sciences
来源
Israel Journal of Mathematics | 2006年 / 153卷
关键词
Conjugacy Class; Simple Group; Maximal Subgroup; Minimal Normal Subgroup; Outer Automorphism;
D O I
暂无
中图分类号
学科分类号
摘要
We show that E8(2) has a unique conjugacy class of subgroups isomorphic to PSp4(5) and a unique conjugacy class of subgroups isomorphic to PSL3(5). There normalizers are maximal subgroups of E8(2) and are, respectively, isomorphic to PGSp4(5) and Aut(PSL3(5)).
引用
收藏
页码:307 / 318
页数:11
相关论文
共 50 条
  • [1] On some exotic finite subgroups of E8 and Springer’s regular elements of the Weyl group
    Bertram Kostant
    Transformation Groups, 2010, 15 : 909 - 919
  • [2] There is No "Theory of Everything" Inside E8
    Distler, Jacques
    Garibaldi, Skip
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (02) : 419 - 436
  • [3] There is No “Theory of Everything” Inside E8
    Jacques Distler
    Skip Garibaldi
    Communications in Mathematical Physics, 2010, 298 : 419 - 436
  • [4] On conjugacy classes in the Lie group E8
    Lusztig, George
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (01): : 91 - 94
  • [5] FINITE SIMPLE GROUPS WITH TWO MAXIMAL SUBGROUPS OF COPRIME ORDERS
    Maslova, N., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 1150 - 1159
  • [6] On ζs -Quasinormality of 2-Maximal Subgroups
    Yufeng LIU
    Xiaolong YU
    Lijun HUO
    Journal of Mathematical Research with Applications, 2013, (04) : 412 - 418
  • [7] Finite groups all of whose 2-maximal subgroups are π-decomposable
    V. A. Belonogov
    Proceedings of the Steklov Institute of Mathematics, 2015, 289 : 26 - 41
  • [8] Finite Groups All of Whose 2-Maximal Subgroups Are π-Decomposable
    Belonogov, V. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 : S26 - S41
  • [9] On finite groups with given maximal subgroups
    V. S. Monakhov
    V. N. Tyutyanov
    Siberian Mathematical Journal, 2014, 55 : 451 - 456
  • [10] On finite groups with given maximal subgroups
    Monakhov, V. S.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (03) : 451 - 456