Complexity and Approximability of Parameterized MAX-CSPs

被引:0
作者
Holger Dell
Eun Jung Kim
Michael Lampis
Valia Mitsou
Tobias Mömke
机构
[1] Saarland University and Cluster of Excellence,SZTAKI
[2] Université Paris Dauphine,undefined
[3] Hungarian Academy of Sciences,undefined
[4] Saarland University,undefined
来源
Algorithmica | 2017年 / 79卷
关键词
Constraint satisfaction problems; Parameterized complexity; Approximation; Clique width; Neighborhood diversity;
D O I
暂无
中图分类号
学科分类号
摘要
We study the optimization version of constraint satisfaction problems (Max-CSPs) in the framework of parameterized complexity; the goal is to compute the maximum fraction of constraints that can be satisfied simultaneously. In standard CSPs, we want to decide whether this fraction equals one. The parameters we investigate are structural measures, such as the treewidth or the clique-width of the variable–constraint incidence graph of the CSP instance. We consider Max-CSPs with the constraint types AND\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {AND}}$$\end{document}, OR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {OR}}$$\end{document}, PARITY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {PARITY}}$$\end{document}, and MAJORITY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {MAJORITY}}$$\end{document}, and with various parameters k, and we attempt to fully classify them into the following three cases:The exact optimum can be computed in FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {FPT}$$\end{document} time.It is [inline-graphic not available: see fulltext]-hard to compute the exact optimum, but there is a randomized FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {FPT}$$\end{document} approximation scheme (FPT-AS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {FPT\text {-}AS}$$\end{document}), which computes a (1-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1{-}\epsilon )$$\end{document}-approximation in time f(k,ϵ)·poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(k,\epsilon ) \cdot {\text {poly}}(n)$$\end{document}.There is no FPT-AS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {FPT\text {-}AS}$$\end{document} unless [inline-graphic not available: see fulltext]. For the corresponding standard CSPs, we establish FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {FPT}$$\end{document} versus [inline-graphic not available: see fulltext]-hardness results.
引用
收藏
页码:230 / 250
页数:20
相关论文
共 32 条
[1]  
Alekhnovich M(2011)Satisfiability, branch-width and Tseitin tautologies Comput. Complex. 20 649-678
[2]  
Razborov AA(1995)The complexity and approximability of finding maximum feasible subsystems of linear relations Theor. Comput. Sci. 147 181-210
[3]  
Amaldi E(1998)On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems Theor. Comput. Sci. 209 237-260
[4]  
Kann V(2000)Linear time solvable optimization problems on graphs of bounded clique-width Theory Comput. Syst. 33 125-150
[5]  
Amaldi E(1995)A dichotomy theorem for maximum generalized satisfiability problems J. Comput. Syst. Sci. 51 511-522
[6]  
Kann V(2012)Agnostic learning of monomials by halfspaces is hard SIAM J. Comput. 41 1558-1590
[7]  
Courcelle B(2014)Guarantees and limits of preprocessing in constraint satisfaction and reasoning Artif. Intell. 216 1-19
[8]  
Makowsky JA(2009)Hardness of learning halfspaces with noise SIAM J. Comput. 39 742-765
[9]  
Rotics U(2001)Some optimal inapproximability results J. ACM 48 798-859
[10]  
Creignou N(2012)Algorithmic meta-theorems for restrictions of treewidth Algorithmica 64 19-37