Optimal binary codes derived from F2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2} \mathbb {F}_4$$\end{document}-additive cyclic codes

被引:1
作者
Taher Abualrub
Nuh Aydin
Ismail Aydogdu
机构
[1] American University of Sharjah,Department of Mathematics and Statistics
[2] Kenyon College,Department of Mathematics and Statistics
[3] Yildiz Technical University,Department of Mathematics
关键词
-additive cyclic codes; Duality; Quantum codes; Optimal codes; 94B05; 94B60;
D O I
10.1007/s12190-020-01344-5
中图分类号
学科分类号
摘要
In this paper, we study the algebraic structure of additive cyclic codes over the alphabet F2r×F4s=F2rF4s,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{2}^{r}\times {\mathbb {F}}_{4}^{s}={ \mathbb {F}}_{2}^{r}{\mathbb {F}}_{4}^{s},$$\end{document} where r and s are non-negative integers, F2=GF(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2}={\mathbb {GF}}(2)$$\end{document} and F4=GF(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{4}={\mathbb {GF}} (4)$$\end{document} are the finite fields of 2 and 4 elements, respectively. We determine generator polynomials for F2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2}\mathbb {F}_{4}$$\end{document}-additive cyclic codes. We also introduce a linear map W that depends on the trace map T to relate these codes to binary linear codes over F2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F} _{2}.$$\end{document} Further, we investigate the duals of F2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2}\mathbb {F}_{4}$$\end{document}-additive cyclic codes. We show that the dual of any F2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2}\mathbb {F }_{4}$$\end{document}-additive cyclic code is another F2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2}\mathbb {F}_{4}$$\end{document}-additive cyclic code. Using the mapping W, we provide examples of F2F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2}\mathbb {F}_{4}$$\end{document}-additive cyclic codes whose binary images have optimal parameters. We also consider additive cyclic codes over F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{4}$$\end{document} and give some examples of optimal parameter quantum codes over F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{4}$$\end{document}.
引用
收藏
页码:71 / 87
页数:16
相关论文
共 45 条
[1]  
Abualrub T(2014)-additive cyclic codes IEEE Trans. Inf. Theory 60 1508-1514
[2]  
Siap I(2017)A generalization of quasi-twisted codes: multi-twisted codes Finite Fields Appl. 45 96-106
[3]  
Aydin N(2010)-linear codes: generator matrices and duality Des. Codes Crypt. 54 167-179
[4]  
Aydin N(1996)Good quantum error-correcting codes exist Phys. Rev. A 54 1098-1105
[5]  
Halilovic A(1998)Quantum error correction via codes over GF(4) IEEE Trans. Inf. Theory 44 1369-1387
[6]  
Borges J(1998)-linear codes IEEE Trans. Inf. Theory 44 1543-1547
[7]  
Fernández-Córdoba C(1991)On repeated-root cyclic codes IEEE Trans. Inf. Theory 37 337-342
[8]  
Pujol J(1999)Gray isometries for finite chain rings IEEE Trans. Inf. Theory. 45 2522-2524
[9]  
Rif à J(2017)Structure and performance of generalized quasi-cyclic codes Finite Fields Appl. 47 183-202
[10]  
Villanueva M(1994)The IEEE Trans. Inf. Theory. 40 301-319