Laser-structured superhydrophobic/superoleophilic aluminum surfaces for efficient oil/water separation

被引:0
|
作者
Lie Chen
Yating Huang
Tao Yang
Peter Bennett
Zhong Zheng
Qibiao Yang
Dun Liu
机构
[1] Hubei University of Technology,Laser Group, School of Mechanical Engineering
[2] Wuhan Technical College of Communications,School of Naval Architecture and Navigation
来源
Environmental Science and Pollution Research | 2020年 / 27卷
关键词
Nanosecond laser; Perforated; Superhydrophobic/superoleophilic aluminum plate; Oil/water separation; Hole size; Hole spacing;
D O I
暂无
中图分类号
学科分类号
摘要
The current demand for oil/water separation with an efficient, cost-effective, and environmentally friendly method is increasing. A laser-structured superhydrophobic/superoleophilic aluminum was prepared by using a nanosecond laser. The aluminum plate was used for oil/water separation without external force, which can replace the traditional porous materials. The effect of hole diameter and spacing on the effectiveness of oil/water separation is discussed. The results show that the aluminum plate with a hole size of 0.5 mm can be considered a more appropriate choice for the oil/water mixtures with large water content. In addition, complete separation of oil and water can be achieved in the hole spacing range of 1.0–3.0 mm. The oil separation speed can be increased without changing the water permeability by reducing the hole spacing, which is positively related to the hole spacing. Separation efficiencies were tested with various oil/water mixtures. The aluminum plate with a hole size of 0.5 mm can quickly separate the different oil mixtures with less than 50% oil content while achieving an oil separation efficiency of up to 99%. Due to the difference in dynamic viscosity of various oil phases, the separation efficiencies of the petrol, kerosene, and diesel are slightly different but can still be maintained above 99%. The laser-processed aluminum plate has several advantages of high porosity, high surface of superhydrophobic properties, and easy tunable structures. In practical applications, the hole size and the spacing should be appropriately adjusted according to specific conditions, such as different oils, the mixing ratios, etc., to obtain the best separation efficiency and speed.
引用
收藏
页码:43138 / 43149
页数:11
相关论文
共 50 条
  • [41] Flame retardant, superhydrophobic, and superoleophilic reduced graphene oxide/orthoaminophenol polyurethane sponge for efficient oil/water separation
    Jamsaz, Azam
    Goharshadi, Elaheh K.
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 307
  • [42] Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil-Water Separation
    Gu, Jiahui
    Fan, Hongwei
    Li, Chunxi
    Caro, JuErgen
    Meng, Hong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (16) : 5297 - 5301
  • [43] Fabrication of a superhydrophobic-superoleophilic particle material for oil-water separation and oil extraction
    Zhu, Guoxin
    Li, Xiao
    Zhang, Xiong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 681
  • [44] Superhydrophobic/superoleophilic polyurethane /reduced graphene oxide/ sponge for efficient oil-water separation and photothermal remediation
    Ji, Hong
    Guo, Jie
    Yang, Ke
    Jiang, Juncheng
    Xing, Zhixiang
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 191 : 2653 - 2662
  • [45] Superoleophilic polyurethane sponge for highly efficient oil/water separation
    Li, Xianfeng
    Lin, Bo
    Zheng, Chen
    Li, Zhimin
    Wang, Peng
    Liu, Guocong
    MATERIALS EXPRESS, 2020, 10 (07) : 1122 - 1126
  • [46] Superhydrophobic and superoleophilic PH-CNT membrane for emulsified oil-water separation
    Zhao, Yanhua
    Guo, Jiaxin
    Li, Yuchao
    Zhang, Xinning
    An, Alicia Kyoungjin
    Wang, Zuankai
    DESALINATION, 2022, 526
  • [47] Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: Separation of oil/water mixture and demulsification
    Yu, Tianlong
    Halouane, Fatima
    Mathias, Dolci
    Barras, Alexandre
    Wang, Ziwen
    Lv, Anqi
    Lu, Shixiang
    Xu, Wenguo
    Meziane, Dalila
    Tiercelin, Nicolas
    Szunerits, Sabine
    Boukherroub, Rabah
    CHEMICAL ENGINEERING JOURNAL, 2020, 384
  • [48] Preparation of superhydrophobic and superoleophilic nanostructured layer on steel mesh for oil-water separation
    Khosravi, Maryam
    Azizian, Saeid
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 172 : 366 - 373
  • [49] Superhydrophobic-Superoleophilic SiO2/Polystyrene Porous Micro/nanofibers for Efficient Oil-Water Separation
    Yadan Ding
    Dan Xu
    Hong Shao
    Tie Cong
    Xia Hong
    Huiying Zhao
    Fibers and Polymers, 2019, 20 : 2017 - 2024
  • [50] Superhydrophobic-Superoleophilic SiO2/Polystyrene Porous Micro/nanofibers for Efficient Oil-Water Separation
    Ding, Yadan
    Xu, Dan
    Shao, Hong
    Cong, Tie
    Hong, Xia
    Zhao, Huiying
    FIBERS AND POLYMERS, 2019, 20 (10) : 2017 - 2024