Laser-structured superhydrophobic/superoleophilic aluminum surfaces for efficient oil/water separation

被引:0
|
作者
Lie Chen
Yating Huang
Tao Yang
Peter Bennett
Zhong Zheng
Qibiao Yang
Dun Liu
机构
[1] Hubei University of Technology,Laser Group, School of Mechanical Engineering
[2] Wuhan Technical College of Communications,School of Naval Architecture and Navigation
来源
Environmental Science and Pollution Research | 2020年 / 27卷
关键词
Nanosecond laser; Perforated; Superhydrophobic/superoleophilic aluminum plate; Oil/water separation; Hole size; Hole spacing;
D O I
暂无
中图分类号
学科分类号
摘要
The current demand for oil/water separation with an efficient, cost-effective, and environmentally friendly method is increasing. A laser-structured superhydrophobic/superoleophilic aluminum was prepared by using a nanosecond laser. The aluminum plate was used for oil/water separation without external force, which can replace the traditional porous materials. The effect of hole diameter and spacing on the effectiveness of oil/water separation is discussed. The results show that the aluminum plate with a hole size of 0.5 mm can be considered a more appropriate choice for the oil/water mixtures with large water content. In addition, complete separation of oil and water can be achieved in the hole spacing range of 1.0–3.0 mm. The oil separation speed can be increased without changing the water permeability by reducing the hole spacing, which is positively related to the hole spacing. Separation efficiencies were tested with various oil/water mixtures. The aluminum plate with a hole size of 0.5 mm can quickly separate the different oil mixtures with less than 50% oil content while achieving an oil separation efficiency of up to 99%. Due to the difference in dynamic viscosity of various oil phases, the separation efficiencies of the petrol, kerosene, and diesel are slightly different but can still be maintained above 99%. The laser-processed aluminum plate has several advantages of high porosity, high surface of superhydrophobic properties, and easy tunable structures. In practical applications, the hole size and the spacing should be appropriately adjusted according to specific conditions, such as different oils, the mixing ratios, etc., to obtain the best separation efficiency and speed.
引用
收藏
页码:43138 / 43149
页数:11
相关论文
共 50 条
  • [31] Robust and flexible superhydrophobic/superoleophilic melamine sponges for oil-water separation
    Demirel, Gokcen Birlik
    Aygul, Ebru
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 577 : 613 - 621
  • [32] Preparation of superhydrophobic and superoleophilic polylactic acid nonwoven filter for oil/Water separation
    Fan, Guochao
    Diao, Yunhe
    Huang, Beili
    Yang, Huige
    Liu, Xuying
    Chen, Jinzhou
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2020, 41 (02) : 289 - 296
  • [33] Fabrication of Superhydrophobic/Superoleophilic Kitchen Sponge for Removal and Separation of Oil from Water
    He, Meiru
    Wang, Huameng
    Cheng, Yuanyuan
    Niu, Qian
    He, Linlin
    Liu, Chunxue
    CHEMISTRYSELECT, 2023, 8 (35):
  • [34] Durable superhydrophobic/superoleophilic epoxy/attapulgite nanocomposite coatings for oil/water separation
    Yang, Jin
    Tang, Yongcai
    Xu, Junqing
    Chen, Beibei
    Tang, Hua
    Li, Changsheng
    SURFACE & COATINGS TECHNOLOGY, 2015, 272 : 285 - 290
  • [35] Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation
    Qing, Weihua
    Shi, Xiaonan
    Deng, Yajun
    Zhang, Weidong
    Wang, Jianqiang
    Tang, Chuyang Y.
    JOURNAL OF MEMBRANE SCIENCE, 2017, 540 : 354 - 361
  • [36] Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review
    Rasouli, Seyedabbas
    Rezaei, Nima
    Hamedi, Hamideh
    Zendehboudi, Sohrab
    Duan, Xili
    MATERIALS & DESIGN, 2021, 204
  • [37] Superhydrophobic/superoleophilic cotton fabrics treated with hybrid coatings for oil/water separation
    Guoqing Li
    Zhonghua Mai
    Xin Shu
    Dongzhi Chen
    Min Liu
    Weilin Xu
    Advanced Composites and Hybrid Materials, 2019, 2 : 254 - 265
  • [38] Preparation and properties of superhydrophobic-superoleophilic sand for oil-water separation
    Yang F.-S.
    Ren Y.-Z.
    Zhang Z.-Y.
    Huo C.
    Ma L.
    Yang, Fu-Sheng, 1600, Chongqing Wujiu Periodicals Press (50): : 165 - 171
  • [39] Fabrication of superhydrophobic/superoleophilic functionalized reduced graphene oxide/polydopamine/PFDT membrane for efficient oil/water separation
    Cheng, Yuanyuan
    Barras, Alexandre
    Lu, Shixiang
    Xu, Wenguo
    Szunerits, Sabine
    Boukherroub, Rabah
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 236
  • [40] A facile approach in fabricating superhydrophobic and superoleophilic poly (vinylidene fluoride) membranes for efficient water-oil separation
    Ju, Junping
    Wang, Tingmei
    Wang, Qihua
    JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (24)