Lévy noise-induced transition and stochastic resonance in Brusselator system

被引:0
作者
Qiang Dong
Yongfeng Guo
Xiaojuan Lou
Linjie Wang
机构
[1] Tiangong University,School of Mathematics Science
来源
Indian Journal of Physics | 2022年 / 96卷
关键词
Brusselator model; Noise-induced transition; Stochastic resonance; Lévy noise;
D O I
暂无
中图分类号
学科分类号
摘要
The noise-induced transition and stochastic resonance (SR) phenomenon of Brusselator system under the excitation of Lévy noise is investigated in this paper. The Janicki–Weron algorithm is used to simulate Lévy noise, and the stationary probability density is obtained by solving the system equation through the fourth-order stochastic Runge–Kutta algorithm. The influences of the noise intensity, stability index and skewness parameter on the stationary probability density are analyzed. The numerical results imply that the stability index, skewness parameter and noise intensity can induce the transition. Moreover, the effects of the stability index and skewness parameter of Lévy noise, as well as the amplitude of external signal on the signal-to-noise ratio are discussed. The research results show that the larger stability index, skewness parameter and signal amplitude are beneficial to the occurrence of SR.
引用
收藏
页码:1187 / 1192
页数:5
相关论文
共 105 条
[1]  
Bashkirtseva I(2014)undefined Int. J. Bifurc. Chaos 24 1440020-undefined
[2]  
Ryazanova T(1985)undefined J. Phys. A: Math. Gen. 18 2239-undefined
[3]  
Ryashko L(1982)undefined Tellus 34 10-undefined
[4]  
Benzi R(2011)undefined Phys. Rev. E 83 056215-undefined
[5]  
Sutera A(2012)undefined Nonlinear Dyn. 70 531-undefined
[6]  
Vulpiani A(2016)undefined Appl. Math. Model. 40 9445-undefined
[7]  
Benzi R(2014)undefined J. Sound Vibr. 333 2568-undefined
[8]  
Parisi G(2013)undefined H Q Zhang Phys. Rev. E 88 052721-undefined
[9]  
Sutera A(2016)undefined Chaos Solitons Fractals 92 91-undefined
[10]  
Vulpiani A(1994)undefined Phys. Rev. E 49 1734-undefined