MV-algebras and Partially Cyclically Ordered Groups

被引:0
作者
Gérard Leloup
机构
[1] Laboratoire Manceau de Mathématiques,
[2] Faculté des Sciences,undefined
来源
Order | 2022年 / 39卷
关键词
MV-algebras; MV-chains; Partially cyclically ordered abelian groups; Cyclically ordered abelian groups; Pseudofinite; 06B99; 06F99;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that there exists a functorial correspondence between MV-algebras and partially cyclically ordered groups which are the wound-rounds of lattice-ordered groups. It follows that some results about cyclically ordered groups can be stated in terms of MV-algebras. For example, the study of groups together with a cyclic order allows to get a first-order characterization of groups of unimodular complex numbers and of finite cyclic groups. We deduce a characterization of pseudofinite MV-chains and of pseudo-simple MV-chains (i.e. which share the same first-order properties as some simple ones). We generalize these results to some non-linearly ordered MV-algebras, for example hyperarchimedean MV-algebras.
引用
收藏
页码:323 / 359
页数:36
相关论文
共 15 条
[1]  
Chang CC(1959)A new proof of the completeness of Łukasiewicz axioms Trans. Amer. Math. Soc. 93 74-80
[2]  
Feferman S(1959)The first-order properties of algebraic systems Fund. Math. 47 57-103
[3]  
Vaught R(2018)First order theory of cyclically ordered groups Ann. Pure. Appl. Logic 169 896-927
[4]  
Giraudet M(1993)Cyclic ordered groups and MV-algebras, Czechoslovak Math. J. 43 249-263
[5]  
Leloup G(1953)Contribution à l’étude des groupes ordonnés J. Math. Pures Appl. 32 203-280
[6]  
Lucas F(1988)Representation of cyclically ordered groups Časop. Pěstov. Matem. 113 184-196
[7]  
Glusschankov D(2019)Pseudo-c-archimedean and pseudo-finite cyclically ordered groups Math. Log. Quart. 65 412-443
[8]  
Jaffard P(1986)Interpretation of AF C*-Algebras in Łukasiewicz Calculus and MV-algebras J. Funct. Anal. 65 15-31
[9]  
Jakubík J(1984)Śverkovskii’s theorem Sibrisk. Math. Zh. 25 46-53
[10]  
Pringerová C(1961)n∘1 Trans. Am. Math. Soc. 99 21-40