Estimation of the critical rate of temperature rise for thermal explosion of nitrocellulose using non-isothermal DSC

被引:0
作者
Huiya Wang
Hai Zhang
Rongzu Hu
Ergang Yao
Pengjiang Guo
机构
[1] Northwest University,Department of Mathematics
[2] Xi’an Modern Chemistry Research Institute,undefined
来源
Journal of Thermal Analysis and Calorimetry | 2014年 / 115卷
关键词
Critical rate of temperature rise; Non-isothermal DSC; Thermal explosion; NC; Trust-region approach;
D O I
暂无
中图分类号
学科分类号
摘要
The expressions to calculate the critical rate of temperature rise of thermal explosion (dT/dt)Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $$\end{document} for energetic materials (EMs) were derived from the Semenov’s thermal explosion theory and autocatalytic reaction rate equation of nth order, CnB, Bna, first-order, apparent empiric-order, simple first-order, Au, apparent empiric-order of m = 0, n = 0, p = 1 and m = 0, n = 1, p = 1, using reasonable hypotheses. A method to determine the kinetic parameters in the autocatalytic-decomposing reaction rate equations and the (dT/dt)Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $$\end{document} in EMs when autocatalytic decomposition converts into thermal explosion from data of DSC curves at different heating rate was presented. Results show that (1) under non-isothermal DSC conditions, the autocatalytic-decomposing reaction of NC (12.97 % N) can be described by the first-order autocatalytic reaction rate equation dα/dt = 1016.00exp(−174520/RT)(1 − α) + 1016.00exp(−163510/RT)α(1 − α); (2) the value of (dT/dt)Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $$\end{document} for NC (12.97 % N) when autocatalytic decomposition converts into thermal explosion is 0.354 K s−1.
引用
收藏
页码:1099 / 1110
页数:11
相关论文
共 54 条
[1]  
Zhang H(2002)Estimation of the critical rate of temperature rise for thermal explosion of first-order autocatalytic decomposition reaction systems using non-isothermal DSC J Hazard Mater 54 205-210
[2]  
Xia ZM(1994)The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC Thermochim Acta 244 171-176
[3]  
Guo PJ(2009)Estimation of critical temperature of thermal explosion for nitrosubstituted azetidines using non-isothermal DSC Chin J Chem 27 2145-2154
[4]  
Hu RZ(2004)Estimation of the critical rate of temperature rise for thermal explosion of autocatalytic decomposing reaction of nitrocellulose using non-isothermal DSC Thermochim Acta 416 47-50
[5]  
Gao SL(2004)Kinetics of the first order autocatalytic decomposition reaction of nitrocellulose (13.86 % N) Chin J Chem 20 163-165
[6]  
Ning BK(1996)An interior trust region approach for nonlinear minimization subject to bounds SIAM J Optim 6 418-445
[7]  
Fang Y(2012)Kinetic analysis of thermal decomposition in liquid and solid state of 3-nitro and 4-nitro-benzaldehyde-2,4-dinitrophenylhydrazones J Therm Anal Calorim 109 255-263
[8]  
Shi QZ(1970)Kinetic analysis of derivative curves in thermal analysis J Therm Anal Calorim 2 301-324
[9]  
Liu RJ(2009)Estimation of the critical temperature of thermal explosion for azido-acetic-acid-2-(2-azido-acetoxy)-ethylester using non-isothermal DSC J Therm Anal Calorim 95 477-482
[10]  
Zhang TL(1999)Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC J Therm Anal Calorim 58 369-373