Implicit-Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection-Diffusion Problems

被引:15
作者
Wang, Haijin [1 ]
Zhang, Qiang [2 ]
Shu, Chi-Wang [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
Implicit-explicit scheme; Local discontinuous Galerkin method; Generalized alternating numerical flux; Convection-diffusion equation; RUNGE-KUTTA SCHEMES; DEVICE SIMULATIONS; MOMENT MODELS; STABILITY; DISCRETIZATION; EQUATION;
D O I
10.1007/s10915-019-01072-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local discontinuous Galerkin methods with generalized alternating numerical fluxes coupled with implicit-explicit time marching for solving convection-diffusion problems is analyzed in this paper, where the explicit part is treated by a strong-stability-preserving Runge-Kutta scheme, and the implicit part is treated by an L-stable diagonally implicit Runge-Kutta method. Based on the generalized alternating numerical flux, we establish the important relationship between the gradient and interface jump of the numerical solution with the independent numerical solution of the gradient, which plays a key role in obtaining the unconditional stability of the proposed schemes. Also by the aid of the generalized Gauss-Radau projection, optimal error estimates can be shown. Numerical experiments are given to verify the stability and accuracy of the proposed schemes with different numerical fluxes.
引用
收藏
页码:2080 / 2114
页数:35
相关论文
共 39 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
[Anonymous], 1991, SOLVING ORDINARY DIF, DOI DOI 10.1007/978-3-662-09947-6
[3]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[4]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[5]   IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES AND FINITE ELEMENTS WITH SYMMETRIC STABILIZATION FOR ADVECTION-DIFFUSION EQUATIONS [J].
Burman, Erik ;
Ern, Alexandre .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04) :681-707
[6]   Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations [J].
Calvo, MP ;
de Frutos, J ;
Novo, J .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (04) :535-549
[7]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[8]   Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for One-Dimensional Singularly Perturbed Problem [J].
Cheng, Yao ;
Zhang, Qiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (02) :792-819
[9]   APPLICATION OF GENERALIZED GAUSS-RADAU PROJECTIONS FOR THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR LINEAR CONVECTION-DIFFUSION EQUATIONS [J].
Cheng, Yao ;
Meng, Xiong ;
Zhang, Qiang .
MATHEMATICS OF COMPUTATION, 2017, 86 (305) :1233-1267
[10]   Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media [J].
Chou, Ching-Shan ;
Shu, Chi-Wang ;
Xing, Yulong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 272 :88-107