The third homology of SL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SL}_2$$\end{document} of local rings

被引:0
作者
Kevin Hutchinson
机构
[1] University College Dublin,School of Mathematics and Statistics
关键词
-theory; Group homology; Special linear group; 20J06; 19F99;
D O I
10.1007/s40062-017-0170-6
中图分类号
学科分类号
摘要
We describe the third homology of SL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL_2$$\end{document} of local rings, over Z12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}\left[ \tfrac{1}{2}\right] $$\end{document}, in terms of a refined Bloch group. We use this result to elucidate the relationship of this homology group to the indecomposable part of K3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_3$$\end{document} of the ring, extending and generalizing recent results in the case of fields. In particular, we prove that if A is a local domain with sufficiently large (possibly finite) residue field then the natural map H3SL2A,Z12→K3ind(A)12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}_{3}\left( {\text {SL}}_{2}\left( A\right) ,{\mathbb {Z}}\left[ \tfrac{1}{2}\right] \right) \rightarrow {K^{\mathrm { ind}}_3(A)}\left[ \tfrac{1}{2}\right] $$\end{document} induces an isomorphism H3SL2A,Z12A×≅K3ind(A)12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}_{3}\left( {\text {SL}}_{2}\left( A\right) ,{\mathbb {Z}}\left[ \tfrac{1}{2}\right] \right) _{A^\times }\cong {K^{\mathrm { ind}}_3(A)}\left[ \tfrac{1}{2}\right] $$\end{document} on coinvariants for the natural action of units A×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^\times $$\end{document}. We prove that the action of A×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^\times $$\end{document} on H3SL2A,Z12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}_{3}\left( {\text {SL}}_{2}\left( A\right) ,{\mathbb {Z}}\left[ \tfrac{1}{2}\right] \right) $$\end{document} is trivial when A is a complete discrete valuation ring with finite residue field of odd characteristic, and we show by example that this action is non-trivial for certain complete discrete valuation rings with infinite residue field.
引用
收藏
页码:931 / 970
页数:39
相关论文
共 11 条
[1]  
Dupont JL(1982)Scissors congruences II. J. Pure Appl. Algebra 25 159-195
[2]  
Sah CH(2013)A refined Bloch group and the third homology of J. Pure Appl. Algebra 217 2003-2035
[3]  
Hutchinson K(2013) of a field J. K-Theory 12 15-68
[4]  
Hutchinson K(2015)A Bloch-Wigner complex for J. Algebra 425 324-366
[5]  
Hutchinson K(2017)On the low-dimensional homology of J. Pure Appl. Algebra 221 1076-1111
[6]  
Hutchinson K(2009)The third homology of J. Pure Appl. Algebra 213 1665-1680
[7]  
Hutchinson K(2011) of fields with discrete valuation Math. Z. 268 329-346
[8]  
Tao L(2015)The third homology of the special linear group of a field J. Pure Appl. Algebra 219 5078-5096
[9]  
Mirzaii B(undefined)Bloch-Wigner theorem over rings with many units undefined undefined undefined-undefined
[10]  
Mirzaii B(undefined)A Bloch-Wigner theorem over rings with many units II undefined undefined undefined-undefined