Existence and Multiplicity of Normalized Solutions to Biharmonic Schrödinger Equations with Subcritical Growth

被引:0
作者
Ziheng Zhang
Jianlun Liu
Qingle Guan
机构
[1] TianGong University,School of Mathematical Sciences
[2] TianGong University,School of Computer Science and Technology
来源
Bulletin of the Iranian Mathematical Society | 2023年 / 49卷
关键词
Nonlinear biharmonic Schrödinger equation; Normalized solutions; Multiplicity; Variational methods; 35A15; 35J30; 35J35; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the existence and multiplicity of normalized solutions to the following biharmonic Schrödinger equation: Δ2u-h(εx)|u|p-2u=λuinRN,∫RNu2dx=c,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} {\Delta }^2u-h(\varepsilon x) |u|^{p-2}u=\lambda u\quad \text{ in }\ {\mathbb {R}}^N, \\ \int _{{\mathbb {R}}^N} u^2 {\textrm{d}}x = c, \\ \end{array} \right. \end{aligned}$$\end{document}where ε,c>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon , c>0,$$\end{document}N≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1,$$\end{document}2<p<2+8N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<2+\frac{8}{N},$$\end{document}λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb {R}}$$\end{document} is a Lagrangian multiplier and h:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:{\mathbb {R}}^N\rightarrow {{\mathbb {R}}}$$\end{document} is a continuous function. Under a class of reasonable assumptions on h,  we obtain the existence of ground-state normalized solutions. Meanwhile, we also prove that the number of normalized solutions is at least the number of global maximus points of h when ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is small enough. Some recent results are generalized and improved.
引用
收藏
相关论文
共 46 条
[1]  
Alves C(2022)On existence of multiple normalized solutions to a class of elliptic problems in whole Z. Angew. Math. Phys. 73 1-17
[2]  
Bartsch T(2019)Multiple normalized solutions for a competing system of Schrödinger equations Calc. Var. Partial Differ. Equ. 58 22-280
[3]  
Soave N(2011)Stable standing waves for a class of nonlinear Schrödinger–Poisson equations Z. Angew. Math. Phys. 62 267-1230
[4]  
Bellazzini J(2010)On the orbital stability for a class of nonautonomous NLS Indiana Univ. Math. J. 59 1211-5071
[5]  
Siciliano G(2018)Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation SIAM J. Math. Anal. 50 5027-65
[6]  
Bellazzini J(2022)Non-homogeneous Gagliardo–Nirenberg inequalities in J. Differ. Equ. 330 1-1462
[7]  
Visciglia N(2002) and application to a biharmonic non-linear Schrödinger equation SIAM J. Appl. Math. 62 1437-442
[8]  
Bonheure D(1983)Self-focusing fourth order dispersion Sov. J. Low Temp. Phys. 9 439-1659
[9]  
Casteras J(1997)Stable three-dimensional small-amplitude soliton in magnetic materials Nonlinear Anal. 28 1633-179
[10]  
dos Santos E(2022)Existence of solutions with prescribed norm for semilinear elliptic equations J. Math. Pures Appl. 164 158-1339