Rings and residuated lattices whose fuzzy ideals form a Boolean algebra

被引:0
作者
S. V. Tchoffo Foka
Marcel Tonga
机构
[1] University of Yaounde 1,Department of Mathematics
来源
Soft Computing | 2022年 / 26卷
关键词
Ring; Ideal; -fuzzy ideal; Residuated lattice; Heyting algebra; Boolean algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we characterize those rings A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} and complete Brouwerian residuated lattices L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}$$\end{document} whose residuated lattice Fid(A,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}id({\mathcal {A}},L)$$\end{document}, of L-fuzzy ideals of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}, forms a Boolean algebra.
引用
收藏
页码:535 / 539
页数:4
相关论文
共 22 条
[1]  
Belluce LP(2009)Commutative rings whose ideals form an Math. Log. Quart. 55 468-486
[2]  
Di Nola A(2010)-algebra Algebra Univ 64 103-116
[3]  
Belluce LP(2019)Rings and Gödel algebras Asian-European J Math 3 1950039-299
[4]  
Di Nola A(2018)Commutative rings whose ideal lattices are complemented Logic Journal of the IGPL 26 290-2476
[5]  
Marchioni E(2017)BL-rings Soft Computing 21 2469-103
[6]  
Chajda I(1988)Generalized Łukasiewicz rings J Math Analy Appl 134 94-551
[7]  
Länger H(2019)Fuzzy prime ideals of rings New Math Nat Comput 15 539-899
[8]  
Heubo-Kwegna OA(2020)A residuated lattice of Soft Comput 24 895-8724
[9]  
Lele C(2020)-fuzzy subalgebras of a mono-unary algebra Soft Comput 24 8717-undefined
[10]  
Ndjeya S(undefined)A note on the algebraicity of undefined undefined undefined-undefined