On (distance) signless Laplacian spectra of graphs

被引:0
作者
B. R. Rakshith
Kinkar Chandra Das
M. A. Sriraj
机构
[1] Vidyavardhaka College of Engineering,Department of Mathematics
[2] Sungkyunkwan University,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2021年 / 67卷
关键词
Signless Laplacian eigenvalues; Distance signless Laplacian eigenvalues; Diameter; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let Q(G), D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {D}}(G)}$$\end{document} and DQ(G)=Diag(Tr)+D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {D}}}^Q(G)={{\mathcal {D}}iag(Tr)} + {{\mathcal {D}}(G)}$$\end{document} be, respectively, the signless Laplacian matrix, the distance matrix and the distance signless Laplacian matrix of graph G, where Diag(Tr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {D}}iag(Tr)}$$\end{document} denotes the diagonal matrix of the vertex transmissions in G. The eigenvalues of Q(G) and DQ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {D}}}^Q(G)$$\end{document} will be denoted by q1≥q2≥⋯≥qn-1≥qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{1} \ge q_{2} \ge \cdots \ge q_{n-1} \ge q_n$$\end{document} and ∂1Q≥∂2Q≥⋯≥∂n-1Q≥∂nQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^Q_1 \ge \partial ^Q_2 \ge \cdots \ge \partial ^Q_{n-1} \ge \partial ^Q_n$$\end{document} , respectively. A graph G which does not share its distance signless Laplacian spectrum with any other non-isomorphic graphs is said to be determined by its distance signless Laplacian spectrum. Characterizing graphs with respect to spectra of graph matrices is challenging. In literature, there are many graphs that are proved to be determined by the spectra of some graph matrices (adjacency matrix, Laplacian matrix, signless Laplacian matrix, distance matrix etc.). But there are much fewer graphs that are proved to be determined by the distance signless Laplacian spectrum. Namely, the path graph, the cycle graph, the complement of the path and the complement of the cycle are proved to be determined by the distance signless Laplacian spectra. In this paper, we establish Nordhaus–Gaddum-type results for the least signless Laplacian eigenvalue of graph G. Moreover, we prove that the join graph G∨Kq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\vee K_{q}$$\end{document} is determined by the distance singless Laplacian spectrum when G is a p-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-2$$\end{document} regular graph of order p. Finally, we show that the short kite graph and the complete split graph are determined by the distance signless Laplacian spectra. Our approach for characterizing these graphs with respect to distance signless Laplacian spectra is different from those given in literature.
引用
收藏
页码:23 / 40
页数:17
相关论文
共 53 条
[1]  
Aouchiche M(2013)Two Laplacians for the distance matrix of a graph Linear Algebra Appl. 439 21-33
[2]  
Hansen P(2016)On the distance signless Laplacian of a graph Linear Multilinear Algebra 64 1113-1123
[3]  
Aouchiche M(2018)Cospectrality of graphs with respect to distance matrices Appl. Math. Comput. 325 309-321
[4]  
Hansen P(2013)A survey of Nordhaus–Gaddum type relations Discrete Appl. Math. 161 466-546
[5]  
Aouchiche M(2007)Signless Laplacians of finite graphs Linear Algebra Appl. 423 155-171
[6]  
Hansen P(2019)Nordhaus-Gaddum-type result on the second largest signless Laplacian eigenvalue of a graph Linear Multilinear Algebra 67 2307-2324
[7]  
Aouchiche M(2019)On distance Laplacian and distance signless Laplacian eigenvalues of graphs Linear Multilinear Algebra 205 45-51
[8]  
Hansen P(2016)Complete split graph determined by its (signless) Laplacian spectrum Discrete Appl. Math. 297 74-78
[9]  
Cvetković D(2017)Kite graphs determined by their spectra Appl. Math. Comput. 423 53-73
[10]  
Rowlinson P(2007)Old and new results on algebraic connectivity of graphs Linear Algebra Appl. 438 1215-1222