Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal

被引:0
作者
Cheng-Long Zhang
Su-Yang Xu
Ilya Belopolski
Zhujun Yuan
Ziquan Lin
Bingbing Tong
Guang Bian
Nasser Alidoust
Chi-Cheng Lee
Shin-Ming Huang
Tay-Rong Chang
Guoqing Chang
Chuang-Han Hsu
Horng-Tay Jeng
Madhab Neupane
Daniel S. Sanchez
Hao Zheng
Junfeng Wang
Hsin Lin
Chi Zhang
Hai-Zhou Lu
Shun-Qing Shen
Titus Neupert
M. Zahid Hasan
Shuang Jia
机构
[1] International Center for Quantum Materials,Department of Physics
[2] School of Physics,Department of Physics
[3] Peking University,Department of Physics
[4] Laboratory for Topological Quantum Matter and Spectroscopy (B7),Department of Physics
[5] Princeton University,Department of Physics
[6] Wuhan National High Magnetic Field Center,Department of Physics
[7] Huazhong University of Science and Technology,undefined
[8] Centre for Advanced 2D Materials and Graphene Research Centre,undefined
[9] National University of Singapore,undefined
[10] National University of Singapore,undefined
[11] National Tsing Hua University,undefined
[12] Institute of Physics,undefined
[13] Academia Sinica,undefined
[14] Condensed Matter and Magnet Science Group,undefined
[15] Los Alamos National Laboratory,undefined
[16] University of Central Florida,undefined
[17] Collaborative Innovation Center of Quantum Matter,undefined
[18] South University of Science and Technology of China,undefined
[19] The University of Hong Kong,undefined
[20] Princeton Center for Theoretical Science,undefined
[21] Princeton University,undefined
来源
Nature Communications | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.
引用
收藏
相关论文
共 77 条
[11]  
Savrasov SY(2015)Discovery of a Weyl Fermion semimetal and topological Fermi arcs Science 349 622-44
[12]  
Murakami S(2015)A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class Phys. Rev. X 5 031013-3868
[13]  
Xu S-Y(2006)Weyl semimetal phase in non-centrosymmetric transition metal monophosphides Mod. Phys. Lett. B 20 373-3067
[14]  
Huang SM(2008)Experimental observation of Weyl points Phys. Rev. D 78 074033-undefined
[15]  
Weng H(2012)Experimental discovery of Weyl semimetal TaAs Phys. Rev. B 86 115133-undefined
[16]  
Lu L(2012)Berry phase correction to electron density in solids and “exotic” dynamics Phys. Rev. B 85 241101-undefined
[17]  
Lv BQ(2012)Chiral magnetic effect Phys. Rev. B 85 165110-undefined
[18]  
Duval C(2012)Topological response in Weyl semimetals and the chiral anomaly Phys. Rev. D 86 045001-undefined
[19]  
Horvath Z(2013)Adler-Bell-Jackiw anomaly in Weyl semimetals: application to pyrochlore iridates Comptes. Rendus. Physique. 14 857-undefined
[20]  
Horvathy PA(2013)Weyl semimetal with broken time reversal and inversion symmetries Phys.Rev. B 88 104412-undefined