Regge trajectories in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetric Yang-Mills theory

被引:0
作者
Clay Córdova
机构
[1] Society of Fellows,
[2] Harvard University,undefined
关键词
Extended Supersymmetry; Solitons Monopoles and Instantons;
D O I
10.1007/JHEP09(2016)020
中图分类号
学科分类号
摘要
We demonstrate that N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetric non-Abelian gauge theories have towers of BPS particles obeying a Regge relation, J ∼ m2, between their angular momenta, J, and their masses, m. For SU(N) Yang-Mills theories, we estimate the slope of these Regge trajectories using a non-relativistic quiver quantum mechanics model. Along the way, we also prove various structure theorems for the quiver moduli spaces that appear in the calculation.
引用
收藏
相关论文
共 65 条
[1]  
Susskind L(1970)Dual-symmetric theory of hadrons — I Nuovo Cim. A 69 457-undefined
[2]  
Maldacena JM(1999)The large-N limit of superconformal field theories and supergravity Int. J. Theor. Phys. 38 1113-undefined
[3]  
Gubser SS(1998)Gauge theory correlators from noncritical string theory Phys. Lett. B 428 105-undefined
[4]  
Klebanov IR(1998)Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253-undefined
[5]  
Polyakov AM(2002)A semiclassical limit of the gauge/string correspondence Nucl. Phys. B 636 99-undefined
[6]  
Witten E(1998) = 4 Phys. Rev. D 58 066005-undefined
[7]  
Gubser SS(2005)Stability and BPS branes JHEP 09 006-undefined
[8]  
Klebanov IR(2005)The spectrum of BPS branes on a noncompact Calabi-Yau JHEP 09 057-undefined
[9]  
Polyakov AM(2002)Quantum quivers and Hall/hole halos JHEP 10 023-undefined
[10]  
Lee K-M(2014) = 2 Adv. Theor. Math. Phys. 18 27-undefined