Experimental calibration of vanadium partitioning and stable isotope fractionation between hydrous granitic melt and magnetite at 800 °C and 0.5 GPa

被引:0
作者
Paolo A. Sossi
Julie Prytulak
Hugh St. C. O’Neill
机构
[1] Australian National University,Research School of Earth Sciences
[2] Imperial College London,Department of Earth Science and Engineering
[3] Université Paris Diderot,Institut de Physique du Globe de Paris, Sorbonne Paris Cité
[4] CNRS,undefined
来源
Contributions to Mineralogy and Petrology | 2018年 / 173卷
关键词
Redox; Magnetite; Magma; Vanadium; Stable isotope fractionation; Equilibrium;
D O I
暂无
中图分类号
学科分类号
摘要
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_{{{\text{O}}_{\text{2}}}}}$$\end{document}), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing logfO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_{{{\text{O}}_{\text{2}}}}}$$\end{document} relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ∆51Vmag-gl = − 0.63 ± 0.09‰ at FMQ − 1 to − 0.92 ± 0.11‰ (SD) at ≈ FMQ + 5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing logfO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_{{{\text{O}}_{\text{2}}}}}$$\end{document}. These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.
引用
收藏
相关论文
共 286 条
[1]  
Anbar AD(2000)Nonbiological fractionation of iron isotopes Science 288 126-128
[2]  
Roe JE(2017)Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt Geochim Cosmochim Acta 209 284-295
[3]  
Barling J(2008)A model for the viscosity of rhyolite as a function of H Geochim Cosmochim Acta 72 6103-6123
[4]  
Nealson KH(2006)O-content and pressure: a calibration based on centrifuge piston cylinder experiments Am Mineral 91 953-956
[5]  
Arató R(1973)The oxidation state of vanadium in titanomagnetite from layered basic intrusions Contrib Mineral Petrol 42 245-258
[6]  
Audétat A(2010)Magmatic evolution of Hekla, Iceland Chem Geol 274 169-176
[7]  
Ardia P(2001)Parameterization of the Fe–Mg exchange coefficient ( Am Mineral 86 14-20
[8]  
Giordano D(2018)) between clinopyroxene and silicate melts Earth Planet Sci Lett 483 114-123
[9]  
Schmidt MW(1947)The effect of anhydrous composition on water solubility in granitic melts J Chem Phys 15 261-267
[10]  
Balan E(1973)A re-assessment of the oxidation state of iron in MORB glasses J Geophys Res 78 5898-5901