On the genus of reduced cozero-divisor graph of commutative rings

被引:0
作者
E. Jesili
K. Selvakumar
T. Tamizh Chelvam
机构
[1] Manonmaniam Sundaranar University,Department of Mathematics
来源
Soft Computing | 2023年 / 27卷
关键词
Artinian ring; Reduced co-zero divisor graph; Genus of a graph; Planar graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity and let (x) be the principal ideal generated by x∈R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R.$$\end{document} Let Ω(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (R)^*$$\end{document} be the set of all nontrivial principal ideals of R. The reduced cozero-divisor graph Γr(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _r(R)$$\end{document} of R is an undirected simple graph with Ω(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (R)^*$$\end{document} as the vertex set and two distinct vertices (x) and (y) in Ω(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (R)^*$$\end{document} are adjacent if and only if (x)⊈(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x)\nsubseteq (y)$$\end{document} and (y)⊈(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(y)\nsubseteq (x)$$\end{document}. In this paper, we characterize all classes of commutative Artinian non-local rings for which the reduced cozero-divisor graph has genus at most one.
引用
收藏
页码:657 / 666
页数:9
相关论文
共 40 条
[11]  
Livingston PS(2017)On the genus of graphs from commutative rings AKCE Int J Graphs Combin 14 27-153
[12]  
Archdeacon D(2017)Rings whose cozero-divisor graph has crosscap number at most two Discrete Math Algorithms Appl 9 1750074-208
[13]  
Asir T(2016)Classification of rings with toroidal Jacobson graph Czechoslovak Math J 66 307-678
[14]  
Mano K(2013)On the genus of the total graphs of a commutative ring Commun Algebra 41 142-345
[15]  
Bakhtyiari M(2017)On the genus of the annihilator graph of a commutative ring Algebra Discrete Math 24 191-950
[16]  
Nikandish R(2006)Zero-divisor graphs of genus one J Algebra 304 666-undefined
[17]  
Nikmehr M(2008)Classification of rings with genus one zero-divisor graphs Commun Algebra 36 325-undefined
[18]  
Battle J(2011)Reduced Cozero-divisor graphs of commutative rings Int J Algebra 5 935-undefined
[19]  
Harary F(undefined)undefined undefined undefined undefined-undefined
[20]  
Kodama Y(undefined)undefined undefined undefined undefined-undefined