On the genus of reduced cozero-divisor graph of commutative rings

被引:0
作者
E. Jesili
K. Selvakumar
T. Tamizh Chelvam
机构
[1] Manonmaniam Sundaranar University,Department of Mathematics
来源
Soft Computing | 2023年 / 27卷
关键词
Artinian ring; Reduced co-zero divisor graph; Genus of a graph; Planar graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity and let (x) be the principal ideal generated by x∈R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R.$$\end{document} Let Ω(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (R)^*$$\end{document} be the set of all nontrivial principal ideals of R. The reduced cozero-divisor graph Γr(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _r(R)$$\end{document} of R is an undirected simple graph with Ω(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (R)^*$$\end{document} as the vertex set and two distinct vertices (x) and (y) in Ω(R)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (R)^*$$\end{document} are adjacent if and only if (x)⊈(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x)\nsubseteq (y)$$\end{document} and (y)⊈(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(y)\nsubseteq (x)$$\end{document}. In this paper, we characterize all classes of commutative Artinian non-local rings for which the reduced cozero-divisor graph has genus at most one.
引用
收藏
页码:657 / 666
页数:9
相关论文
共 40 条
[1]  
Afkhami M(2011)The cozero-divisor graph of a commutative ring Southeast Asian Bull Math 35 753-762
[2]  
Khashyarmanesh K(2012)Planar, outerplanar, and ring graph of the cozero-divisor graph of a finite commutative ring J Algebra Appl 11 1250103-72
[3]  
Afkhami M(2014)Some results on cozero-divisor graph of a commutative ring J Algebra Appl 13 1350113-54
[4]  
Khashyarmanesh K(2001)The zero-divisor graph of a commutative ring II Lect Notes Pure Appl Math 220 61-245
[5]  
Akbari S(1996)Topological graph theory: a survey Congr Number 115 5-7
[6]  
Alizadeh F(2020)Classification of non-local rings with genus two zero-divisor graphs Soft Comput 24 237-568
[7]  
Khojasteh S(2020)Coloring of cozero-divisor graphs of commutative von Neumann regular rings Proc Math Sci 130 1-226
[8]  
Anderson DF(1962)Additivity of the genus of a graph Bull Am Math Soc 68 565-31
[9]  
Frazier A(1988)Coloring of commutative rings J Algebra 116 208-34
[10]  
Lauve A(2010)Commutative rings with toroidal zero-divisor graphs Houst J Math 36 1-316