共 33 条
[1]
Berryman A.A., The origins and evolution of predator-prey theory, Ecology, 73, pp. 1530-1535, (1992)
[2]
Kuang Y., Beretta E., Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36, pp. 389-406, (1998)
[3]
Zhou X.Y., Cui J.A., Shi X.Y., Song X.Y., A modified Leslie–Gower predator-prey model with prey infection, J. Appl. Math. Comput., 33, pp. 471-487, (2010)
[4]
Liu X.Q., Zhong S., Tian B.D., Zheng F.X., Asymptotic properties of a stochastic predator-prey model with Crowley–Martin functional response, J. Appl. Math. Comput., 43, pp. 479-490, (2013)
[5]
Zhang Y., Gao S.J., Liu Y.J., Analysis of a nonautonomous model for migratory birds with saturation incidence rate, Commun. Nonlinear Sci. Numer. Simul., 17, pp. 1659-1672, (2012)
[6]
Chen Y., Liu Z.J., Haque M., Analysis of a Leslie–Gower-type prey-predator model with periodic impulsive perturbations, Commun. Nonlinear Sci. Numer. Simul., 14, pp. 3412-3423, (2009)
[7]
Arditi R., Perrin N., Saiah H., Functional responses and heterogeneities: an experimental test with cladocerans, OIKOS, 60, pp. 69-75, (1991)
[8]
Arditi R., Saiah H., Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73, pp. 1544-1551, (1992)
[9]
Gutierrez A.P., The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson’s blowflies as an example, Ecology, 73, pp. 1552-1563, (1992)
[10]
Wang K., Zhu Y.L., Pernamence and global asymptotic stability of a delayed predator-prey model with Hassell–Varley type functional response, Bull. Iran. Math. Soc., 37, 3, pp. 197-215, (2011)